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Academic Script 

1. What is Time Series? 

Hello friends nice to meet you. Today we are discussing about 

certain models related with Time series. As you know time series 

has several components like trend, Seasonal, Cyclic and random 

effects. First of all we will study how to separate this 

components. Then we will talk about additive as well as 

multiplicative model in detail. Similarly we shall also talk about 

the stationary time series and then we want to know how we 

can detect stationarity in a given time series. There are certain 

test which we shall study here in detail. So we can start our 

lecture.  

It is a series which relates the given observations pertaining to 

certain phenomena expressing the variation according to time. 

e.g. Series of observations for production, sales, share prices, 

atmospheric data, rainfall, consumption, Income, Savings etc. 

during successive years ( or months or weeks or quarters or 

days). 

Study of such series is important in the sense that if we can 

examine the pattern of variation or some systematic modelling 

approach, then it can be made useful for further planning 

exercise. 

Hence such a study has its own importance for government 

agencies as well as corporate houses, businessmen etc. 

2. What are the components of a time series? 

If we closely examine any given time series then we can find the 

existence of the following components of time series data. 

(1) Trend Component 

The variations or changes that occur during some longer span 

period is called trend component of time series. These are the 



fluctuations which exhibit not in shorter period but in some 

longer period and they reasonably affect the given time series. 

e.g. Price of commodity during 3 to 5 years period, Demand for 

two wheelers in some years, sales and purchases of electronic 

items during successive years etc. Here we find that such a 

variation is found not in shorter period, but for a longer period. 

These changes are attributed due to apptitude, fashion, habits, 

living standard, financial status of people etc. Trend Component 

exhibits long term variation in the given time series. It is also 

the most prominent part in the given time series. 

(2) Seasonal Component 

Demand for raincoats in monsoon, demand for woolen clothes in 

winter, prices and demand for medicines during seasons which 

cause infection, fever and other causalities, number of 

passengers during festival days, etc. These are some examples 

how the variations are observed during seasons (or quarters or 

weeks). These are short term fluctuations in the given series.  

(3) Cyclic Component 

There are business cycles which exhibit changes in the 

observations over a certain period. These are regular changes 

but they are not short time changes. If we examine the series 

over a longer span period, cyclic fluctuations can be seen to 

have short time variations. 

(4) Irregular or Random Component 

These changes occur due to accidental circumstances. e.g. flood,  

famine, frost, earth quake, fire, accidents etc. Which are random 

events, and they can cause variation in the given time series. 

Generally these variations are not in our control as they occur at 

any time and can affect the data reasonably. 



If we summarise all the above factors then given time series (for 

its additive model) can be expressed as composed of 

(Time series) = (Trend) + (Seasonal) + (Cyclic) + (Random)  

Thus (T.S.) = T+S+C+R. 

3. How to separate the component of time series? 

3.1 Methods to separate trend component 

(1) Graphical Method 

If we plot the given time series observations against time, we 

can examine the variational pattern of the series from the 

graph. 

e.g. It can be linear or quadratic or curvilinear etc. This is an 

approximate method which can give us first hand information 

about general pattern of the series. 

(2) Moving Average Method 

This is a very simple and useful method to obtain trend 

component of the time series. It is based upon taking successive 

average obtained from the observations according to periodicity 

of the series. If we plot the observations against time then the 

average of the periods for highest (or lowest) fluctuations can 

determine the periodicity which can be 2 or 3 or 4 or 5 periods 

etc. 

If the periodicity is 3 years (odd years) then we first find sum 

( ) and divide it by 3, place it against second 

observation. Then take next (  ) and divide it by 3, and 

place it against third observation and so on. 

If the periodicity is of 4 years ( even years) we first find sum 

( ) place it between second and third observation, 

then sum two consecutive values and divide the sum by 8 and 

place it next and so on. We loose some observations at the top 



and in the bottom while doing so. We illustrate this by two 

examples as shown below 

Example 1                     odd period            (Periodicity 3) 

Time observation  Sum of 3 obs. Trend 

1 10    

2 12 
 

10+12+16=38 
38/3 = 

12.67 

3 16 
 

12+16+18=46 
46/3 = 

15.33 

4 18 
 

16+18+21=55 
55/3 = 

18.33 

5 21 
 

18+21+17=56 
56/3 = 

18.67 

6 17 
 

21+17+19=57 
57/3 = 

19.00 

7 19 
 

17+19+23=59 
59/3 = 

19.67 

8 23    

 



 

Example 2                               Even period                            

(Periodicity 4) 

   
Sum of 4 

obs. 
 

(Sum of 2 

obs.)/8 

Tren

d 

1 12      

2 17      

   73    

3 21    153/8 19.1 

   80    

4 23    161\8 20.1 

   81    

5 19    164\8 20.5 

   83    

6 18    166\8 20.7 

   83    

7 23    168\8 21.0 

   85    

8 25      

(It may be noted that moving average obtained to find trend is 

in a way weighted average of the successive observations.) 

(3)  Iterated Moving Average Method 

This refers to the above note that moving average is in a way a 

weighted average. If we use moving average method for more 

than one time then it is an Iterated moving average. Here there 

are different methods given as per the period for weighted 

average. Some are known as Spencer’s 15 point formula, 

Spencer’s 21 point formula etc. 

(3) Least Squares Method  

Suppose that given time series has its trend given by  



     (t = 1,2,..n) 

We can obtain coefficients by minimizing the residual sum of 

squares. These are OLSE of Betas. On substitution of   

coefficients, we can estimate polynomial trend given by  

     (t = 1,2,..n) 

Example How to fit polynomial trend  

 

We write normal equations by minimizing error sum of squares 

  

  

   

Hence  which is estimated trend 

(4)  Variate Difference Method 

When we assume a polynomial equation in time of degree p, we 

do not know what will be the value of p. This is accomplished by 

Variate difference method by means of a test statistic. Thus 

whether the polynomial equation in  is of second or third or 

higher degree, this method determines it and then trend can be 

estimated. 

(5) By fitting growth curve models 

Some growth models like Gompertz, modified Gompertz, Logistic 

Curve etc can be fitted for trend component assuming functional 

relationships for trend equation. 

Gompertz curve:  

Logistic curve   :  

Here different methods are used for fitting the above curves to 

the data. 

 

2. Methods of determining Seasonal Component 



3.2 Methods of determining Seasonal Component 

(1) Moving Average Method 

Given time series can be expressed in its additive form by  

 

When we apply M.A. method to determine trend, then subtract 

estimated trend   from the series, so that we get  

which consist of seasonal and random components. 

Now again apply M.A. method for each year (quarter wise or 

season wise e.g. for 4 quarters, it is M.A. with periodicity 4).This 

will eliminate random component and we get seasonal 

component S, we can find quarter wise (or season wise) average 

to express respective seasonal component. 

(2)  Method of Seasonal Index 

Suppose that given time series has observations for 5 years and 

for each of 12 months in an year. We express these 

observations by  ,    

(1) First we compute yearwise monthly average   

(2) Next find over all mean   

(3) Now compute Seasonal Index  

(4) We set the series which is separated from seasonal index by 

 

This contains (T+R) components. 

(5) Then we can obtain Seasonal Index from  

[that is  

(Note: There are also other methods 

Like  

(a) method of link relatives, 

(b) Ratio to trend method 



(c) Ratio to M.A. method etc.) 

3.3 How to separate Random Component? 

When other components are estimated the remaining part is the 

random component. 

Thus given time series   

  

   Random component 

(Note: In the presence of Cyclic component also, we can 

separate cyclic component in a way similar to trend component 

in general and then step by step we can obtain random 

component by elimination procedure) 

4.  Multiplicative model for time Series 

Many times we can observe that not additive but multiplicative 

model for time series is useful. 

   We expressed additive model by  

If we include all the 4 above components then multiplicative 

model can be written by   

  

A speciality of this model is that if a component is not present, 

we take it as 1. 

(e.g. If  is absent, put , then .) 

Similarly if C is absent put , then  .) Such 

presentation of multiplicative form is useful for very long time 

series. Generally when the variational pattern in the series of 

exponential type, multiplicative model may be useful. The 

respective component can be obtained by division rather than 

subtraction in the case of additive model.  

(e.g.   etc. ) 

(It may be noted that our discussion up til now refers to non 

stationary time series models. 



Now we shall discuss stationary time series and relevant results 

step by step in brief) 

5 Stationary Time Series 

In a stationary time series there are no components like trend, 

cyclic or seasonal factors. Such time series is in relation to 

stochastic processes and hence they have very wide 

applications. Certain statistical events which are connected with 

time and follow laws of probability exhibit stochastic processes.  

e.g. Number of passengers travelling by air day to day,  

temperature recorded at some place for different days, number 

of absent employees in a production unit at different days etc. 

(These events are linked with certain probability laws).                                                                                                   

Definition of Stationary, Stochastic Process 

A stochastic process is said to be stationary if its mean and 

variance are constant over time and the value of the co-variance 

between the two time periods depends only on the distance or 

gap or lag between the two time periods and not the actual time 

at which the covariance is computed. 

Let   be a stochastic time series with the properties  

Mean  

Variance  

Covariance =   

Where  the covariance at lag  is the covariance between the 

values  and   that is between two values of  at  periods 

apart. 

If   If is the covariance between two 

adjacent values of   

From this we understand that if a time series is stationary, its 

mean, variance and auto covariance (at different lags) remain 



the same no matter at what point we measure them. Thus a 

stationary time series is time invariant. 

(From this we may also understand that a time series is non 

stationary if it is not time invariant in the sense that it will have 

a time varying mean or a time varying variance or both). 

Purely Random or White noise process 

We call a stochastic process purely random if it has zero mean, 

constant variance and it is serially uncorrelated. In classical 

linear regression model we assumed that , that is 

is independently and identically distributed as a normal 

distribution with zero mean and constant variance, Such a 

process is also known as  Gaussian  White Noise Process. 

 

3. Random Walk Model 

It is often said that asset prices such as stock prices or 

exchange rates follow a random walk that is they are non 

stationary. (e.g. Today’s  stock price is equal to yesterday’s 

stock price plus a random stock).  

We have two types of random walks  

(1) Random Walk without drift (that is no constant or intercept 

term) 

(2) Random Walk with drift (that is when the constant term is 

present). 

Random Walk Without Drift 

Let  be a white noise error term with mean zero and 

variance  .Then the series is said to be a random walk if  

………………….… (1) 

This is also called AR (1) Model. 

From equation (1),  

                                & soon  



Hence we get  ………………….. (2) 

  and  

Here as  increases, variance increases indefinitely. Thus RWM 

without drift is a non stationary stochastic process. 

If we write equation (1) as  

  

It can be verified easily that while  is non stationary,  is 

stationary. 

Random Walk with Drift 

We write  ………….(1) 

Where  is called Drift parameter.  

………….. (2) 

Here  ,  ……………...(3)  

This shows that drifts upwards or downwards depending 

upon  being positive or negative. This model is also AR (1) 

model. 

Autocorrelation Function and Correlogram 

It is important to know whether the given time series is 

stationary or not. A simple test for stationary is based upon Auto 

Correlation Function (ACF). 

ACF at lag is defined as  

 

Where  

  Covariance at lag  and  

The Autocorrelation Function defined above has the following 

properties  

(1)  

(2)  

(3)   



In order that we can decide about an appropriate model for 

given time series, ACF will be useful. Generally we do not have 

value of   based upon population, hence we estimated   from 

the sample. If values of  are plotted against , it is called 

population correlogram. 

We can obtain estimates of   and   based upon samples 

which are     

and    

This gives Sample Autocorrelation Function  given by  

   

When we plot the values of  against , we get  Sample 

Correlogram. 

Usefulness of Sample Correlogram 

(1) If all the plotted values of    against  are very near to 

zero, we may conclude that the given time series is an 

Independent series. 

(2) If value of  is large and other values , ,…are decreasing 

respectively then we may consider AR model as proper for the 

time series. 

(3)If the plotted values of   do not appear to be near zero then 

the given time series is not stationary, but it may be of non-

stationary type. 

Tests of Stationarity 

Now we understand that it is very important to know whether 

the given time series is stationary or not. There are many 

approaches that can be used for this purpose. We shall study 

some of them in brief. 

(1) Q Statistic 



The statistical significance of any estimated   (i.e. ) can be 

judged by its standard error. 

Bartlett has shown that if a time series is purely random (i.e. it 

exhibits white noise) the sample autocorrelation coefficients 

 

From this, Q Statistic is defined as under 

         where  Sample size and  length of lag. 

Q has   distribution with m degrees of freedom 

This was given by Box and Pierce. 

Here we can test the joint hypothesis that all   upto certain 

Lags are zero. 

If  calculated is greater than  tabulated at chosen 

significance level, we can reject null hypothesis. (that means at 

least some of them may be non-zero.). 

(2)  LB Statistic 

Ljung – Box (LB) statistic is a modification for  Statistic. 

 

has  distribution and hence apply  test as usual. This test is 

more powerful than the above  test. 

(3)  Unit Root Test 

Unit Root Test (URT) is widely popular for its applications. 

Let us write    ……… (1) 

Where  is a white noise error term?  

If , equation (1) is a random walk model without drift and it 

is a non stationary stochastic process. 

From equation (1) above, we write 

  

thus     …………….(2) 



If we test the hypothesis  (i.e. ) we have a unit root 

and hence given time series is non stationary. 

 

4. Dickey Fuller Test (DF test) 

Dickey and fuller have shown that under the null hypothesis 

, the estimated coefficienct of   divided by its standard 

error is a  statistic. They have computed tables for DF statistic 

for different sample sizes (Tables are extended by Mackinnon) 

giving critical values at chosen significant level. 

Test is carried out as under  

(1)Regress equation (2) above for   against   and estimate 

coefficient of   (i.e. )  

(2) Obtain DF statistic  by computing  

Generally this may be negative =-- 

(3) Find |  i.e. absolute value of DF statistics 

(4) If the computed absolute value of DF statistic exceeds the 

absolute DF critical value obtained from DF tables, reject the null 

hypothesis that   (i.e. ). Hence time series is stationary. 

(5) If the value so obtained does not exceed the tabulated value 

then we do not reject the null hypothesis. Hence the time series 

is non stationary. 

(Note that this test is also further revised as Augmented DF 

test). 

COINTEGRATION 

Let us define DPI = Real disposable personal income 

                      PCE = Real personal consumption expenditure 

We take logarithmic values of these variables denoted by LDPI 

and LPCI respectively. (Note that both the above variables have 

their respective time series). We consider an equation as under  



  …………………. (1) 

This is a very well known equation in macroeconomic theory.  

is the elasticity of real consumption expenditure with respect to 

real disposable personal income. We can call it as consumption 

elasticity. 

We write from equation (1) as under 

 ………………… (2) 

Note that both  and  series have unit root and thus 

have a stochastic trend. 

If we put   for unit root analysis we find that it is stationary. 

This interesting fact is called Cointegration. Two variables will be 

cointegrated if they have a long term or equilibrium relationship 

between them. Economic theory is often expressed in 

equilibrium terms. Here equation (1) above is called 

Cointegrating equation and the slope coefficient   is called 

Cointgrating Parameter. 

Thus cointegration means that despite being individually non 

stationary, a linear combination of two or more time series can 

be stationary. Cointegration between two (or more) time series 

suggests that there is a long run or equilibrium relationship 

between them. 

There are different tests like Engel Granger (EG) and augmented 

Engel Granger (AEG) tests to find out if two or more series are 

cointegrated. 

There is  Error Correction Mechanism (ECM) given by Engel and 

Granger which is a means of reconciling the short run behavior 

of an economic variable into long run behavior.  

(Note: There is a very wide literature in respect of time series 

forecasting models etc. Our study is kept limited up to this stage 

only)      



 


