

[Glossary]

Autoregressive and Distributed Lag Models

Subject: Business Economics

Course: B. A. (Hons.), 5th Semester,

Undergraduate

Paper No. & Title: Paper – 531

Elective Paper Q1 -

Advanced Econometrics

Unit No. & Title: Unit – 3

Time Series Models

Lecture No. & Title: Lecture – 1

Autoregressive and

Distributed Lag Models

Glossary

1 DLM

It is distributed lag model. A common presentation is as $\alpha + \beta_0 X_t + \beta_1 X_{t-1} + \beta_2 X_{t-2} + \cdots + U_t$

2 ARM

It means Autoregressive model. It is presented by $Y_t = \alpha + \beta X_t + \delta Y_{t-1} + U_t$. It is auto regressive lag model of the first order.

3 Koyck's System Model

Koyck gave a transformation for converting an infinitely distributed lag model into an autoregressive model (with certain assumptions). This refers to Koyck system model.

4 Durbin h test

It is a normality test. This test is an extension of DW test. It is used for detection of auto correlation in AR models.

5 AEM

Adaptive Expectation Model. It is an application of Koyck's model. It is expressed by $Y_t = \gamma \beta_0 + \beta_1 \gamma X_t + (1-\gamma) Y_{t-1} + \vartheta_t$ Where $\vartheta_t = U_t - \lambda U_{t-1}$

6 PAM

It is partial Adjustment model. Another application of Koyck's System. It is expressed by $Y_t = \delta \beta_0 + \delta \beta_1 X_t + (1 - \delta) Y_{t-1} + \delta U_t$

7 IVM

Instrumental Variables method for dealing with estimation of AR models. Here proxy variables are brought in the system with an advantage of obtaining estimates.

8 Lag Operator

DL model is presented by the equation $Y_t = \mu + D(L)X_t + U_t$ Where $D(L) = \delta_0 + \delta_1 L + \dots + \delta_s L^s$. D(L) is called Lag operator which can define different systems in DL model

9 Mean Lag
It is the length of time required for the unit change in the
explanatory variable to the dependent variable Y .
10 Median Lag
It is the time required for the first half of the total change in Y
following a unit sustained change in X.