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Academic Script 

1. Introduction 

Hello friends nice meeting you. We will be discussing today 

about generalized least square. You know that in the GLM when 

the disturbances are such that there variances are uniform then 

it is known as homoscadasticity. But if the variances are 

different then it is known as heteroscadasticity. In a way we 

come across spherical disturbances. To tackle this problem we 

should know what are the tests associated with this one and 

what are the remedial measures which can deal with this 

problems all this things we will discuss in detail in this lecture. 

We want to study now a particular case of k Variate GLM when 

the assumption about homoscadasticity is no longer valid.  

In classical GLM, we assumed that )   and )  ) 

  which meant uniform variance for disturbance term and 

also that no pair of disturbances are correlated. 

Now we wish to examine a situation when this assumption is 

violated. 

In real life situation, the disturbance terms  are hardly found 

to be having uniform variance and also pair wise mutually 

uncorrelated. This refers to a very broad presentation of the 

nature of disturbances. Such disturbances are called non-

spherical disturbances. 

We examine this situation which is called heteroscadasticity. 

Let us consider our k variate GLM in the form of a single matrix 

equation 

                          : , ,   

We assume now that  

)   and )  )  Ω 



Where  is a matrix which is symmetric and positive 

definite. 

[This assumption shows that )   (i = 1,2,…,n) 

and )     i, j  

Here we have to estimate the following parameters    

(i) Unknown  

(ii) (ii)Unknown k beta coefficients 

(iii)Unknown terms  

(iv)Unknown n  terms  

Thus we have totally (1 k n  n ) unknown parameters to be 

estimated, which comes to a total of  unknowns. 

We have only n equations stated by the model. Thus it is not 

possible to obtain unique solution, if we apply our usual ordinary 

least squares method.  

The problem now is how to estimate them? 

This is done by Generalised Least Squares method and hence 

the linear model in this situation can also be called Generalised 

Least Squares Model (GLS model). 

Estimation Procedure 

[Suppose that we use ordinary Least Square method to estimate 

beta coefficients in such case also. 

Then minimizing  gives us    so that  ) 

 but  

 )  

  ) X  

  



Hence ordinary Least Squares give unbiased estimator but will 

not have minimum variance property.] 

We use the same Least Squares principle for estimation here 

also, but quite differently. 

Thus determine estimators of  by minimizing residual sum of 

squares 

M .  

  

Since V is a symmetric positive definite matrix, there exists a 

non-singular matrix P such that  

   

We have   ………...……………………………………… (1) 

Hence   

Write   , ,  

Then  …………………………………………………….. (2) 

Here  

 ) 

)                     

 

And Rank of   

Thus the transformed model (2) has homoscadasticity even 

though original has heteroscadasticity so we get estimator of  

denoted by  by the formula 

  …………………………………………...…………………… 

(3) 

Which is called Generalized Least Squares estimator (GLSE) of . 



 ………..……………………………………………………… 

(4) 

Note that GLSE  is also BLUE for . 

Writing Ω,  

  …………………………...…………………………..….……… 

(5) 

(Note that GLSE of  is also called Aitken’s estimators) 

Estimation of  if V is Known 

From the transformed model given in (2) above, we can find 

estimate of  when V is known. 

As usual,   and hence unbiased estimator of  is given 

by 

   

Where  is GLSE of  as shown above. 

Some Testing Problems 

If we assume normality for disturbances then  

Hence   

And any linear combination Z       has also normal 

distribution given by 

    ,{        

This gives some testing problems. 

(1) To test     Versus       

Here   is a specified value of  

We apply  test by   



Where   

Here  has (n-k) degrees of freedom  

Hence apply the test as usual. 

(2) To test       against      

Here      is some specified value of . 

We have   which has student’s  distribution with 

(n degrees of freedom and  is S.E. of (  

Thus  

And now   test can be applied as usual. 

[Note These results can be extended for the case of linear 

restrictions upon Beta coefficients. e.g.  is the linear 

restrictions imposed upon the parameters. Here and   are 

known, and further test procedure can be carried out. As an 

example, test for constant returns to scale in cobb Douglass 

production function means to test whether  or not, 

which refers to the parametric restrictions.] 

 

2. A specific Heteroscadasticity Problem 

Let us consider a specific situation for heteroscadasticity when 

the matrix V takes a particular form as diagonal matrix. 

Thus for the model    

We have  and  V 

Where V , , …, ) 

(Here diagonal elements are arbitrary constants , , …,  and 

non-diagonal elements are zero). 



This shows that )   (i  

and COV ( )     i 1,2,..,n   j  (i ) 

If each   (i  there is homoscadasticity. 

   

Thus   

And    

Choice of λ coefficient is arbitrary, hence it can be shown that  

can be made more efficient than OLSE of  by choosing λ’s. 

We illustrate this by two variables model. 

Illustration  

Let     (i  

With heteroscadastic situation. 

 , X   ,   

Then  

And   

Hence   

Which determines GLSE of  and . 

  

Thus   

Which gives  under heteroscadasticity with 

  (i  



Here choice of λ coefficients is arbitrary. 

If we choose        then it can be shown that is more 

efficient than its OLSE. 

Milder and Harder Heteroscadasticity 

(I) If   (i 1 ,2,..n), it is called Harder 

Heteroscadasticity. (Choosing    ) 

(II) If  (i  1, 2,..,n) it is called Milder 

Heteroscadasticity.(Choosing    ) 

We can have similar other forms also for harder and milder 

Heteroscadasticity. 

As for example,  is still milder form and 

 will be harder form of heteroscadasticity. 

It may be noted that in all such cases variance of disturbance 

term changes rapidly with the change in the corresponding 

explanatory variable. This also shows that Heteroscadasticity is 

an important issue to be taken care of. 

We now want to study the problem of Heteroscadasticity in more 

details by means of the following 

(1) What are the reasons for Heteroscadasticity ? 

(2) How Heteroscadasticity is generated? 

(3) How to detect Heteroscadasticity? 

(4) How to tackle the problem of Heteroscadasticity? 

What are the reasons for Heteroscadasticity? 

(1) Due to Error Learning models 

As time goes on, the behavior of errors becomes well known and 

thus it tends to decrease the errors. Due to this reason the 

spread or dispersion decreases. 

(2) As Incomes Grow 



Due to increase in Income, as per the passage of time, the 

choice of disposition of income also changes. Thus savings on 

income grows and also varies with time. 

Due to this, the variance of the disturbance term also changes. 

(3) As Efficiency increases 

Due to the sophisticated technological development the data 

processing works in banks, government and corporate offices 

will improve and hence efficiency of the system increases. This 

can result in reducing the error. 

(4) More heteroscadasticity in cross sectional data 

In cross sectional data, since the observations are given over a 

point of time only as compared to the entire time series, it is 

generally observed that the error may not be the same 

throughout and hence there is heteroscadasticity problem. 

(5) Due to presence of outliers 

An outlier is an observation that is much different (very small or 

very large) in relation to the other observations in the sample. If 

such an outlier is imposed (or detected) in the sample data it 

causes variation in error thus resulting into heteroscadasticity 

phenomena. 

How heteroscadasticity is generated? 

While dealing with analysis of data due to some of the reasons 

mentioned below, heteroscadasticity is generated even though 

originally there is no such phenomena. 

(1) By grouping of observations 

Many times the cross section or time series data are grouped as 

per the range of the number of values of the dependent 

variable. If we are dealing with Large data, then also we need 

grouping of observations. This has an effect that even though 

originally there is homoscadasticity, due to grouping of 



observations we find that there is heteroscadasticity. Hence 

GLSE should be used instead of OLSE for grouped data. 

(2) By grouping of equations 

In a similar way, when we deal with Large number of equations, 

all having similar properties of homoscadasticity, we may group 

these equations as per some laid characteristics or norms. 

What we find that due to grouping of equations there is 

heteroscadasticity and hence proper equations should be used to 

deal with the problem. 

(3) By imposing stochastic Linear Constraints on the parameters 

Due to restrictions done by means of stochastic linear 

constraints upon the parameters, even though the original 

model has homoscadasticity, the new model so developed has 

heteroscadasticity. Here also we should use GLSE instead of 

OLSE. 

 

3. How heteroscadasticity is detected? 

There are different ways to detect the presence of 

heteroscadasticity. We now want to know them one by one in 

nutshell. 

(A) Graphical Method 

We run the regression data as usual assuming no 

heteroscadasticity. Then we can draw scatter diagrams as shown 

in the following diagrams. On axis we can take (or ) and 

on  axis we can take . This shows the variational pattern 

representing the situation of heteroscadasticity. In case of more 

  as explanatory variables, we may take any particular   on 

 axis gives  thus showing what type of heteroscadasticity, 

we may have. 



 

Fig (a)  No systematic pattern, showing no heteroscadasticity 

(May be linear) 

(May be quadratic or 

curvilinear) 

This is an informal way for detecting heteroscadasticity. 

(B) Formal Methods 

We have some tests for detecting heteroscadasticity. Some of 

them are (1) spearman’s Rank correlation test (2) Park test (3) 

Glejser test (4) Goldfield and Quandt test etc. 

(1) Spearman’s Rank Correlation test  

We consider model   

Step1   Run this regression and find   

Step2   Find  and find rank correlation coefficient between  

and  

If Difference between Rank of  and  find rank 

correlation coefficient by the formula 

         Spearman’s rank correlation coefficient 



Step3 Test   against  . 

This is done by  test  with (n  degrees of freedom 

 Population correlation coefficient  

If  we reject  

(i.e. there is heteroscadasticity.) 

If there are more  variables in the model, we can carry out this 

test for each respective  against   and decide about 

heteroscadasticity. 

(2) Park test  

Park assumed that is some function of . 

He gave the functional form    

Where  is the stochastic disturbance term. 

Then   

(  is natural logarithm). 

Since  is unknown, it is estimated by  as a proxy, so that 

above relation becomes  

  

       where  

We carry out this test in two stages. 

First stage  

(i) Run the regression of  on  as usual without bothering 

about heteroscadasticity. 

(ii) Then find   from this regression 

Second stage 

(i)Now run the regression  

  

(ii) Test for  . If it is significant, there is heteroscadasticity. 



Comments This test suits graphical approach. Since  is 

stochastic error term, it does not satisfy the assumptions of 

OLS. It may itself be heteroscadastic. (Goldfield and Quandt) 

(3) Glejser Test  

Similar to park test, Glejser assumed certain relationship 

between|  and . 

(Note that ) 

First stage Run the regression as usual and find  and 

hence  

(1)   

(2)  

(3)   

(4)  

(5)    

(6)   

Where  is the error term 

Run regression and if  is significant , there is 

heteroscadasticity. 

Comments   can be non-zero and it is serially correlated and 

hence heteroscadastic. Last 2 models are non-linear and OLS 

cannot be obtained with usual procedure. 

Glejser test is good for large samples. 

(4) Goldfield and Quandt test 

Here assumption is that one of the explanatory variables is 

responsible for heteroscadasticity and hence  is positively 

related to one of the explanatory variables. 



Consider two variables model 

  

And (Harder heteroscadasticity) 

Here  is a constant. 

Here  will be larger for larger value of . 

Step: 1 Order or rank the observations according to the values 

of , starting with the lowest  value. 

Step: 2   Omit  central observations as per values of , 

starting with the lowest  value. 

Step: 3  Fit separate regressions for first  and last  

observations, and find respective residual sum of squares  

and  for the two groups. Choice of  is arbitrary. 

  RSS for the smaller  values  

(Small variance group) 

  RSS for the Larger  values 

(Large variance group) 

Each RSS has  k  d. f. 

Where  is the number of parameters to be estimated (including 

the intercept). 

Step: 4 compute the ratio λ   

Under normality assumptions for ,   has distribution with d. 

f. each  

If  is significant, there is heteroscadasticity, otherwise there is 

homoscadasticity. 

Note 



(1) If there are more than two  variables, ranking of 

observations can be done for any one of the  and then others 

follow accordingly. 

This way we can conduct the test for each of the  variables. 

(2) Choose  for  and  for . 

(3) Besides the above mentioned tests for heteroscadasticity, we 

also have some other tests which are mentioned here as- 

Breusch-Pagan-Godfrey test (BPG test), 

White’s general heteroscadasticity test etc. as some of the 

advanced methods 

 

4. How to tackle the problem of Heteroscadasticity? 

We study in brief about some remedial measures to solve the 

problem of Heteroscadasticity. 

Since OLS estimators under Heteroscadasticity are not efficient, 

some remedial measures are needed. 

We study them in two parts: 

I. When  is known.  II. When  is unknown.  

I. When  is known 

Here we use the method of weighted least squares (WLS). 

We write  and since  are 

known, we use them as weights to resolve the problem.  Let us 

write  This ensures to give less weightage 

for higher variation and more weightage for lower variation. 

Thus weights are inversely proportional to the variance  

Let us consider two variables model 

PRF  

SRF ,   



We obtain estimators of  and  under the case of 

heteroscadasticity by writing  and , then these estimators 

are obtained by minimizing the error sum of squares 

 

Which gives  and  

Here            

           

(Check that if  (No Heteroscadasticity) we get the results 

for OLSE under homoscadasticity) 

Also if all weights are same, that is  for all i=1, 2, ….,n. 

We conclude that here WLSE and OLSE are the same. 

For WLSE, formula for  is given by, 

 

Note that under Heteroscadasticity the OLS estimators are 

unbiased and consistent, however they are not efficient in small 

as well as large samples. 

II. When  is Unknown 

In this case we have a number of assumptions to solve the 

problem of Heteroscadasticity. 

Assumption (1)   When  

(This means that variance of the disturbance term is 

proportional to square of the explanatory variable which is 

Harder Heteroscadasticity) 

Consider the model ………………………… (1) 

We divide both the side by  

Hence …………………………………………..… (2) 



Where  

 

This shows that model (1)  has heteroscadasticity but 

transformed model in (2) has homoscadasticity. 

We can run this regression of  against  and find OLS 

estimators, Note that slope and intercept terms are changed in 

new model compared with original. 

Assumption (2)When  (Milder 

heteroscadasticity) 

 

Hence we transform the model dividing by  

So that …………………………………….. (3) 

Where   

Thus transformed model has homoscadasticity even though 

original model has heteroscadasticity. 

We run the regression of  on the variable  and  and find 

OLS estimators. 

This has an important feature. There is no intercept term. Hence 

regression is to be done through the original model to estimate 

 and . 

Following diagrams represent these two situations for 

assumption (1) and assumption (2) 



            

Assumption (1)             Assumption (2)  

Harder Heteroscadasticity        Milder Heteroscadasticity 

Assumption (3) When  

We have the model ……………………………… (1) 

Then ……………………………………………………. (2) 

We transform the model by writing 

 

  ……………...……………. (3) 

Here      

Thus transformed model has homoscadasticity. 

We apply two stage Least squares method as under. 

First stage (i) We regress as usual model (1) and find 

 

For sufficiently large samples, and ) can be considered to 

be near. We go to the second stage 

Second Stage   ……………………………. (4) 

Run the regression in (4) and find  and  which are now two 

stage least squares estimates of  and . Here also there is no 

intercept term. 

Assumption (4) Logarithmic transformation of the 

variables 



Due to logarithmic values, original observations are reduced 

which controls heteroscadasticity. 

   

Where Ln denotes log values at natural base. 

Run this regression instead of original and find estimators. Here 

advantage is that  give estimate of elasticity and serves a 

basis of measuring sensitivity. Due to this, the method is 

popular in empirical econometrics. 

(The method does not work if some observation is zero or 

negative) 

 


