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Academic Script 

1. Prediction in Linear Models 

Welcome friends today we want to study prediction in linear 

models and Multicollinearity. As you know there are many 

statistical applications by means of statistical models and stee 

theories, they will be studied unless we get applications it will be 

meaningless. In this applications also it is the last part that is 

predictions in the linear models. So we will study certain things 

connected to two variables models and k variable models. Next 

we will have the problem of multicollinearity. It is also an 

important factor when you want to analyse data. Here we will 

know how multicollinearity arises, how we can detect them and 

what are the remedial actions for multicollinearity. 

While dealing with linear model, it is equally important to know 

about prediction based upon fitted model. This is essentially very 

useful for forecasting and also decision making excercises. We 

shall deal with this topic in two parts-(1.1) case of two variables 

model and (1.2) case of K variate model. 

(1.1) Two Variables Case 

Suppose that we may be interested to know about the effect of 

raising petrol (or diesel) price on consumption by its users. We 

can have the analysis in two parts (i) Individual prediction (ii) 

Mean prediction  

(i) Individual Prediction  

We have the model   Y = +   +   

Here  = Price of petrol 

   Y = Consumption 

At a given price   , we can have the actual consumption 

given by  

 +    +  



Where   Disturbance term 

When we find OLSE of  and  then we get prediction   

    +  

Here      Prediction Error  

    – (  + ) 

Hence   0 ⇒  =  which means that Least Squares 

predictor is unbiased. 

     +  +   

Which gives      

This shows that  is minimum at    and it is given by  

   

S.E. of prediction is given by  

S. E.   

    

As before      

We can apply  test for significance of individual prediction  

given by the formula 

    

Which has student’s   distribution with (n degrees of 

freedom 

Also 100(1 ) % confidence interval for  is given by the 

formula 

  . S.  

(e.g.  95% confidence interval for  will be  

 (S.E. of ) 



Where  is tabulated value of  for significance level 

0.025 and d. f. (n  

(ii)Mean Value Prediction 

Many times we may be interested about mean prediction instead 

of individual prediction and practically it makes more sense to 

consider such prediction. 

i. e. To consider  rather than  itself 

We have , and here the prediction error defined as 

 will be given by      

         (  + ) 

Then   0 ⇒ linear predictor is unbiased. 

Here     and it is given by  

     

Which indicates that it is minimum at  , thus      

As before we have  statistic for testing of this prediction (  

replaced by   ) and 100(1 ) % confidence 

interval for Mean prediction will be obtained from  

      =       

(As for example, 99% confidence interval for Mean value 

prediction is given by the expression. 

        

Here is the tabulated value of  statistics for d. f. (n  

and significance Level 0.005 

(1.2) K variables case  

(1) Individual prediction  

We write the linear model as  

 (i = 1, 2… n) 



Now suppose that the explanatory Variables  , ,.  .  .  .  .  . 

,  have some known (fixed) values denoted by  , ,.  .  .  .  

.  . ,  and we want to know about predicted value on the 

basis of OLS estimation of the model 

Then    

Prediction of    

We can write    

        

Where  

    (  , , . . . . , ):1    ,    ( , , , . . . . , 

):  

Then prediction error       ) 

  

 is estimated by   

Upon normality assumption of disturbances, that is   (0, )   

i = 1, 2… n 

We have  

Hence as usual we can carry out  test by using the formula 

    

S.E. of  S   with degrees of freedom (n ) 

Also 100(1 ) % confidence interval for prediction will be 

given by the formula  

  .     

.  



Where  is the value of  for significance level  and 

degrees of freedom (n ) 

(2)Mean Prediction 

Concept of mean prediction is more reasonable than individual 

prediction. We extend this for k variate General Linear Model. 

We have    

Then Mean Prediction  )   

Here Prediction error    ) 

         

                  

               

Upon normality assumption we have  

)  N  

  is estimated by . 

We have  statistics given by 

          

Which gives        

having student’s  distribution with ) degrees of freedom, 

apply  test for significance of mean prediction. 

Also 100(1  confidence interval for mean prediction will be 

given by 

    .  

Where  is the value of  statistics for significance level 

0.025 and degrees of freedom ). 

 

2. Multicollinearity 



1 what is multicollinearity? 

In linear models, multicollinearity occurs if one (or more) 

explanatory variable can be expressed as a linear combination of 

other variables. This concept was given by Ragnar Frisch and it 

corresponds to the concept of linear dependence of vectors. 

In linear models, we have one basic assumption that all the 

explanatory variables are linearly independent. Due to his in k 

variate model, with data matrix if there is no 

multicollinearity, |  0 and thus Rank of (  , 

so that matrix  is non-singular and  exists 

If multicollinearity arises then   and  is not a full 

rank matrix 

In particular if |  0, then  is a singular matrix and 

regular inverse  does not exist. This is the case of 

perfect multicollinerarity. 

Diagrammatic presentation is as under  

(Here variable  is shown as dependent on   ,  and ) 

 

 

 

 

 

 

 

 

Figure: 1 No multicollinearity between  ,  and  
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Figure :2 Here X2 is Independent with X3 and X4, but X3 

and X4 are related thus there is multicollinearity between 

X3 and X4. 

The case of multicollinearity is thus violation of one of the basic 

assumptions of classical linear model. (It is violation of rank 

condition) 

To understand this concept let us take a very simple illustration 

as under                                             

Variable  Variable  Variable  

10 50 52 

15 75 75 

18 90 92 

24 120 129 

30 150 152 

We find that  and here correlation coefficient between 

 and , that is . 

Also                         where  is stochastic error. 

Here  0.9959 Thus there is perfect multicollinearity between 

 and ( ) but there is imperfect multicollinearity 

between  and  ( ) 

We give below two actual applications to understand the concept 

(1)         

Where consumption 

          Income 

    Wealth 



Here  and  can be multicollinear as income can generate 

wealth and vice versa. 

(2) 

(GDP) Constant  

We cannot take both explanatory variables population as well as 

population density. This generates multicollinearity. 

 

3. Practical Consequences of multicollinearity 

We have two cases (as seen above) for perfect multicollinearity 

and imperfect multicollinearity. (Less than perfect 

multicollinearity) 

(I) In the case of perfect multicollinearity, the OLS estimators 

are indeterminate and also their variances (and hence standard 

errors) are indeterminate. 

(II)In the case of severe but Less than perfect multicollinearity, 

we have the following consequences 

(1)OLS estimators can be obtained but their variances (and 

hence standard errors) become very large (more in the case of 

high degrees of   multicollinearity) 

(2)Due to the large standard errors the confidence intervals also 

become larger and do not remain meaningful. 

(3)Due to high degree of multicollinearity, the probability of 

accepting a false hypothesis increases  

(4)Standard errors become much more sensitive due to slight 

change in the data in the presence of multicollinearity 

(5)Under high degree of multicollinearity a higher value of  is 

obtained but none or very few estimated regression coefficients 

are found to be statistically significant. 

To illustrate this, we consider 3 variables model as shown below 

 =     



Here all the variables are measured from their means. (Thus   

   ,  =    ,  =    ) 

OLS estimators are given by the formula  

    

   

Let us assume that   

(λ is an arbitrary constant) 

Then   Indeterminate  

    Indeterminate    (Due to perfect multicolllinearity) 

V ( )                        Variance of disturbance 

term 

V ( )                          

If   , V ( )     , V ( )  

Hence they are indeterminate. Larger the value of  (that 

means higher degree of multicollinearity),  larger will be the 

variances and hence standard errors will also be larger. 

How to detect multicollinearity?  

Multicollinearity is a sample phenomenon arising due to the 

largely non experimental data collected. 

We do not have one unique method for its detection. There are 

several rules of thumb which are commonly used for its 

detection. 

(1) High  but few significant  ratios 

Collinearity is often suspected when  is high (that is from 0.8 

to 1) and when zero order correlations are also high but none or 

very few of the partial regression coefficient are significant 

(2) High pairwise correlation among Regressors 

One must check for the partial correlation coefficients also. 



For example, for regression of  on   ,  and  

If we find that  is very high but the partial correlation 

coefficients denoted by ,  and  are  

comparatively low, we can suspect multicollinearity between  

,  and , so that at least one of these variables is superfluous. 

(3) Auxilliary Regressions 

Since multicollinearity arises due to one or more of the 

explanatory variables having exact or approximate linear 

combinations, of the other explanatory variables, one way of 

finding out which  variable is related to other variables is to 

regress each  on the other remaining  variables and compute 

the value of  in each case. We denote it by   

Each such regressions are called auxilliary regressions. On the 

basis of , we compute the ratio  

 

Which has F distribution with  and  degrees of 

freedom. If  is significant it shows that  is collinear with other 

 if is not significant, we can retain that variable in the model. 

(4) Klein’s rule of thumb 

Let    Multiple coefficient of determination when  is 

regressed against all   

And    Multiple coefficient of determination for auxiliary 

regression when  is regressed against other  

Then if  , we may conclude that multicollinearity may 

be a troublesome problem.(However this is only an approximate 

rule) 

(5) Eigen values and condition Index  

We have |  , …  



Where  is the  eigen value (characteristic root) of the matrix  

 

We can obtain    Maximum Eigen value 

  And      Minimum Eigen value  

Then define condition number K by 

  and further condition Index is given by CI   

If  lies between 100 and 1000 there is moderate to strong 

multicollinearity and if  exceeds 1000, there is severe 

multicollinearity. 

Thus if CI lies between 10 to 30, there is moderate to strong 

multicollinearity, but it is severe if CI exceed 30. 

(6) Tolerance and Variance Inflation Factor 

For  variate GLM, V ( )  

                                    

Where estimated partial regression coefficient  

          Multiple coefficient of determination for auxilliary 

regression of  on other  

 Variance Inflation Factor  

      

VIF is indicator for multicollinearity. Larger the value of VIF, 

more troublesome is multicollinearity 

As a rule of thumb, if VIF exceeds 10, there is very high 

multicollinearity. 

Other measure is tolerance which is defined as  

  

 lies between 0 and 1 

Clearly is equal to 1, if , and here   is not related to 

other  and there is no multicollinearity. 



If  is equal to 0, if  and here  is perfectly linearly 

related to other and there is perfect multicollinearity. 

 

4. How to takle the problem of multicollinearity? 

(Remedial Measures for multicollinearity) 

There are several methods as the remedial measures for tackling 

the problem of multicollinearity 

1. By Using A priori information 

On the knowledge of some parameter values beforehand we can 

deal with the problem of multicollinearity. Consider 

consumption, Income wealth model as  

        

Where consumption 

         Wealth 

     Income 

Due to nature of  and , there is multicollinearity 

Now suppose that  (that is about 20% of income is 

generated from wealth) 

Then           

               (   )  

                  

Where      

This helps in resolving the problem of multicollinearity. We have 

used a priori information which is collected from past data or 

experience or analysis or intuition or from relevant economic 

theory etc. 

2 By Combining Cross Sectional and time series data 

Sometimes a combination of time series and cross sectional data 

can be useful in overcoming the problem of multicollinearity 

Suppose we have the model 



     

Where Number of cars sold, 

Average price  

     I  Income  

Obviously  and I have multicollinearity. We may consider cross 

sectional data for this model first and we may obtain estimate of 

 (denoted by   ). In cross section data the variation over a 

point in time is not too much. 

We use this estimate  to run the time series model. 

Thus     

Where   

This resolves the problem of multicollinearity such method is 

also called pooling of time series and cross section data. 

3 By dropping variable and specification bias 

This method is simplest in the sense that one of the superfluous 

variables can be dropped from regression. 

As for illustration, let          

We suspect multicollinearity between  and  . 

We may drop  or  and run the model. 

Suppose we drop  then 

     

Here   

Hence  will be a biased estimate of  as long as  is not 

zero. 

This method appears to be simple but we commit specification 

error and specification bias and it can mislead to the true values 

of the parameters. 

4 By transforming the variables 



Since in multicollinearity, the variables tend to move in the same 

direction, sometimes it may be helpful for transformation of the 

variables by means of taking successive differences. 

Thus Let        

Then     

Where   

       

       

         

We can run regression based upon new form of the model. 

Here by taking differences we may loose some observations and 

thus degrees of freedom also decreases which are very 

important for small samples. The assumption of linear model will 

be violated as  will be serially correlated. In the case of cross 

section data, this method is not appropriate. 

5 Reducing Collinearity in Polynomial Regression 

Suppose that we have a cubic cost function given by  

        

Where  cost,  output 

We may write  and  and proceed further, but  

and  have multicollinearity. One way to deal with the issue is 

to use observations deviated from their means, which reduces 

multicollinearity substantially. 

Here techniques like orthogonal polynomials can be used. 

6 Using additional or new data 

Here when we suspect multicollinearity, we can use additional 

observations on the variables and augment data matrix  

further. This increases sample size and helps in reducing 

standard errors of the estimates. But choosing additional 

observations may not be that easy as it seems. 



7 Klein’s Eigen value approach 

We know that for k variate GLM, | , …  Where  is 

the  Eigen value  of the matrix  . 

If | is very near to zero, we suspect the presence of 

multicollinearity. 

Suppose that  Eigen value   is very small. Then we choose a 

constant d and write the new augmented data matrix as    

Where  

 

Here  is the eigen vector corresponding to eigen value   

It can be shown that V ( ) is given by  

V ( )  

Where , , …,  are the elements of  By proper choice of 

the constant d, we can reduce the  component in the above 

formula and thus V ( ) can be reduced. Choice of constant d 

can be obtained by considering many advanced approaches. 

8 By using Ridge Regression 

This is rather a mechanical and purely numerical method. Ridge 

regression estimator for  is defined as  

   

Where  is an arbitrary constant 

Here  

This shows that Ridge Regression Estimate (RRE) is not 

unbiased for  

However  



From which it can be shown that the variances of RRE 

Estimators are less than OLS estimators. Hence this method can 

be beneficial to resolve the problem of multicollinearity. 

Then question is how to select constant  one approach for 

choosing  to run Ridge Regression is to find  such that 

 is minimum. that is choose constant  such 

that the sum of MSE’s of the ridge estimators is minimum. Ridge 

technique essentially consists of an arbitrary numerical 

adjustment to the sample data to tackle the problem of 

multicollinearity. 

From this we have Generalized Ridge Regression Estimator 

(GRRE) of  given by  

  

Where A: n n is an arbitrary matrix then  

  

Which shows that GRRE is biased estimator for . 

As before   

Which can be made smaller by properly choosing matrix A 


