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Academic Script 

Hello friends nice to meet you. In the first lecture we had 

introduced some concepts about two variables and three 

variables models. This models are extremely useful for 

applications. However in actual life there can be more than 2 or 3 

variable. In general there can be many variables. A number of 

variables which are explanatory can be effective upon the 

dependent variable. So it is necessary to get extension of our 

studies. For that purpose we shall now introduced what is known 

as classical k variate linear regression models. This model is 

stated with its basic assumptions. Two main basic assumptions of 

the model are one is Homoscadasticity and other is no 

multicollinearity. This model will be explained with its properties 

and applications then you will also know about certain 

mathematical forms of the model connected with linear 

regression. This models are Log-Log model, Log-lin model, Lin-

Log model, reciprocal model etc. After that you will have a brief 

study of what is known as bird eye view of econometric methods. 

This will give you the idea of what we are going to study further. 

In the words of great philosopher Confusious “ When you know, 

what you have to know, you have already cross the half way of 

knowledge. Now let us begin our lecture 2. 

1. k Variate General Linear ModelWe want to extend now the 

ideas of two and three variables model for k variables. 

Illustration 

Agricultural production for a particular crop depends upon 

certain input factors like  rainfall (or irrigation), fertilizer, 

pesticides, seedlings for the crop, Labourforce participation, 

humidity, capital investments etc. This dependency relationship 



can be expressed by means of a linear model which expresses 

multiple regression between the concerned variables. 

Let  = Dependent (endogenous) variable (crop products) 

 , ,  .  .  .  .  .  . ,  are the independent explanatory 

variables (rainfall, fertilizer, etc.) we express the equation for 

the model as 

 =  +  +  + .  . . . . +  + U          (PRF) . .  . . . 

(1) 

Here , , , . . . . ,  are the k unknown parameters (which 

are regression coefficients) and U is the disturbance term. 

We can write equation (1) as 

 =   +  +  + .  . . . . +  + (SRF) . .. . 

(2) 

Here  =  observation of  

        = observation of   

                

        = observation of  

and  =  error term (i = 1, 2,…, n) 

 , , . . . . ,  denote the estimated values of the population 

parameters , , , . . . . , . 

The expression given in (2) above is a system of n homogenous 

equations in which we know all n values of  and   , , .  .  .  .  

.  . ,  but beta coefficients are unknown. 

2. Matrix Form 

Matrix presentation for equations in (1) is as under  

 =  +                        (PRF) . . . . . . . . . . . . .. (3) 

Where  =   , 



  =    , 

 =  

 =  

Correspondingly equations in (2) will become 

 =  +                      (SRF) . . . . . . . . . . . . . (5) 

Where   =  , 

  =  . . . . . . . . .. . . . . . . . . (6) 

The above model is called k variate General Linear Model under 

the following basic assumptions 

(1) ) =   ) = 0        for all i = 1,2, . . . . ,n 

(2) ) =   ) =  for all i = 1,2, . . . . , n 

and COV ( ) = 0 for all i = 1,2, . . . . , n and j = 1,2, . . . . , 

n (i j) 

This assumption about uniformly of variance is called 

Homoscadasticity. 

(3) Data matrix  is fixed and non stochastic (This assumption 

states that there is no distributional pattern in the variables  

, ,  .  .  .  .  .  . ,  . 

(4) Rank of matrix   =  ( ) = k < n 

Hence  ( ) =  ( ) = k  |  0 



And thus columns of  are not linearly dependent. 

 exists as |  0. 

(This assumption states that there is no multicollinearity among   

 variables). 

Once when we estimate this model, then prediction about Y‘s on 

the basis of given (known) values of X‘s can be obtained by 

means of  =  

Problem now is how to estimate Beta Coefficients. 

This is done by least squares method. 

3. OLS Estimation 

We use the least squares principle to find estimates of Beta 

Coefficients. 

Thus minimize    =  to obtain unknown Betas, so that 

we get  

  =   

and  V ( ) =  . 

 Obtained above are called ordinary least squares estimators. 

[OLSE] 

By Gauss – Markov theorem    is BLUE for . 

(BLUE  Best Linear Unbiased Estimator  

Linear as it is linear function of observations on , unbiased 

because E ( ) =  and best because V ( ) is minimum).To 

compute V ( ) we need . 

Unbiased estimator of  is given by  

 =    =  

 



4. MLE of   and  

We would also like to find out Maximum Likelihood Estimators 

for  and . 

This will be based upon normality assumptions. 

Thus if   ( , ) 

(Means each  is independently normally distributed with mean 

zero and variance  

Then MLE of  and  are obtained by  

MLE of  =  =  =   = OLSE of  

Thus MLE and OLSE of  are the same. 

MLE of  =  =  =  

Now OLSE of  =  =  

So that (n-k)  =  = n  

Hence  =  

i.e. MLE of  = OLSE of  

However for large n,    

(They are identical for large n) 

Note    Under normality assumptions, that is  

  ( , ) it can be easily verified that    

5. Coefficient of Determination  

As in the earlier case, here also we can define Multiple 

Coefficient of Determination denoted by  by the following 

formula 

 =  =  

Extending the earlier formula, we have  



 =  

(Where the variables are measured from their means) 

This relation in matrix form, becomes  

 =  

(Here  is also shown by symbol   ) 

6. Testing Problems 

We have correlation matrix P representing pair wise ordinary or 

zero-order correlation coefficients 

P =  

 = correlation coefficient between  and  (i, j = 1, 2 . . . k) 

And similar results exist for partial correlation coefficients in 

terms of above correlation coefficients. 

(I)  Testing for Individual Beta Coefficients 

To test  :  

Vs    :      

Here  is some specified value of  

We have t =      which has students t distribution with (n-k) 

degrees of freedom. 

Hence test can be carried out as usual and confidence intervals 

can also be obtained. 

(II) Testing for Overall Significance of Regression 

We can have ANOVA as under 



Thus we test the hypothesis, 

 : = . . . =  = 0          (i.e. All Betas Zero) 

Vs      :  .  .  .   0 (i.e. All Betas non-Zero) 

As above we have F =  =  

Which has F distribution with = (k  1) and =  d. f. 

We expect F to be significant for the Validity of Betas (i.e. 

Validity of the model) 

(III)   Testing for  

 :  = 0       (i.e.  = 0) ⇒  

Vs   : 0 (i.e.   0) ⇒    

(  = Population Multiple Correlation Coefficient) 

This is also provided by the following ANOVA table  

Thus F =   =  



Which has F distribution with = (k  1) and =  d. f. 

We expect F to be significant for the Validity of the model (that 

is significance of  

Illustration 1  

Consider the following model  

Y =  +   +   + U  

Where  Y = Production of onion crop in India 

    = Cultivation Area  

    = time in years 

       U = Disturbance term 

The estimated model is worked out as under with other details 

Interpret the model  

Here  = 2.33,  = 1.02,  = 0.04 

Per year, (when cultivation area is fixed) there is about 4% 

increase in crop production. 

Also irrespective of the time component, for unit cultivation area 

there is about 1.02 units increase in production. 

The partial regression coefficients and  are highly significant 

at 1% level of significance. Coefficient  is not significant. About 

96.15% of the variation is explained by the model and F is found 

to be highly significant, thus claiming for suitability of the model 

considered. 

Illustration 2 

Two different forms of regression models are fitted with the 

given data 

Model I   

Y =  +   +   +   



Model II 

Y =  +   +    +   +  

For these models,    (numerically) 

If both the models have significant values for , which model 

would you recommend? 

 And  are the adjusted values of for these models. Since 

  , we consider second model as better one as compared 

to the first model. 

(Note that here the dependent variable is the same in both the 

models, however explanatory variables may change.) 

Thus decision can be taken on the basis of larger value of 

adjusted . 

7. Functional Forms of Regression Models 

As an extension of the linear models, we can consider the 

functional forms of the models. These are classified as  

(1)Long- linear (or Double Log model) 

(2) Semi log models. 

(3) Reciprocal models. 

Semi log models are also classified as log Lin and Lin Log 

models. 

We can consider two variables relationship to illustrate them and 

can be extended further for more variables. 

The following tabular form gives in nutshell the broad categories 

of the above models. 



Note that double- log linear model has constant elasticity, whereas all 

other models have elasticity variable, depending upon the nature of 

the corresponding observations on the variables concerned. 

(We can define new variable for reciprocal or logarithmic value and 

run regression. 

e.g. In model (5) put  1/X, 

In model (2), put  =  ,  =  etc. 

Conclusions based upon transformed model are to be viewed on 

the basis of the original model also) 

8. Broad Generalization of Linear Models 

(BIRD EYE VIEW for Econometric methods) 

We have stated GLM with some specific assumptions. 

If these assumptions are violated one by one then we have very 

interesting cases which represents different features for 

economic methods for linear models. We express them briefly as 

under. 

(1)  =  

When this assumption is violated we can write  =   (  

 ) = 0  

for i = 1, 2... , n 

This means  =  where  =    



It is like change of origin. This can be dealt with in the usual 

manner, but here there is Specification Problem and 

Specification Bias which should be considered. 

(2)  

This shows that  =  for  

If this assumption is violated we may write  =  (i = 1, 

2..., n) 

And   0 i, j = 1,2,…,n (i j) 

Thus variances are not uniform and any pair of covariance is 

non-zero. 

This is the case of Heteroscadasticity. 

Here instead of OLS estimators, Generalized Least Square 

Estimators are used. 

For this case, in particular we can use Weighted Least Squares 

estimators. Under certain stated assumptions we have Two 

stage Least Squares methods for estimation. 

(3) Autocorrelation 

In particular, under the heteroscadastic situations if the 

disturbance terms have a first order autoregressive relation 

given by the following  

 =  +      (i = 1, 2..., n) 

Where  = Autocorrelation coefficient. 

 are the stochastic error terms with assumptions similar to 

classical model. 

Here the explanatory variables may be related with disturbances 

i.e.   0 

These phenomena of autocorrelation can be detected by means 

of Durbin Watson (DW) test and resolved by means of using 

methods like Cochran Orcutt Iterative procedure. 



(4)  

If we assume that    then the assumption ) to be non-

singular is violated. Here  may be equal to or very near to 

zero. In this case, the columns of  are linearly related. This is 

called Multicollinearity Problem which can be dealt with by 

means of different approaches. 

(5) Stochastic Process 

If Data matrix  is Stochastic instead of non-stochastic, the 

variables in  have some distributional aspects. In this case we 

have the problem of Stochastic Regressors and some methods 

like Instrumental variables etc. can be used. 

(6) Lag model 

We may have lag in time relationship like  

 =  +   +   +   

i.e. one (or more) explanatory variables may be related in terms 

of the earlier period values. This is lag structure in the models. 

Special methods are needed to resolve these problems. 

(7) Measurement Errors 

Actual measurements in variables contain some error of 

measurement. This can be dealt with by special techniques. 

(8) Simultaneous Equations System Models 

Here in place of a single matrix equation we have a system of 

several linear equations and special feature about this system is 

that a particular variable in one equation which is explanatory 

variable may occur as an endogenous variable in other equation 

and so on. 

This system of simultaneous equations needs separate 

approach. First is the problem of Identification. The solution 

procedure uses the methods like Indirect Least Squares, Two 

Stage Least Squares etc. 



(9) Non-normality assumptions 

Instead of using the normality assumption for disturbances, we 

may have the situations where other than normal distribution 

holds good for disturbances. This needs special specific 

treatment. In some situations, the problem can be resolved by 

taking large samples. 

(10) Dummy Variables 

If the explanatory variables are qualitative in nature then we can 

replace them by giving numerical values. This is Dummy 

Variables approach. There are very interesting applications in 

this case. 

In particular, when the dependent variable is qualitative then we 

have Linear Probability Model (LPM) tackling the situation. 

A specific approach here is by using Logit and Probit techniques. 

(11) Time Series Models  

We have forecasting for time series using AR, MA, ARIM, VAR 

models etc.  

 


