

[Glossary]

Multiple Regression Model and Extensions

Subject: Business Economics

Course: B. A. (Hons.), 5th Semester,

Undergraduate

Paper No. & Title: Paper – 531

Elective Paper Q1 -

Advanced Econometrics

Unit No. & Title: Unit - 1

Relaxing the Assumptions

of the Classical Linear

Model

Lecture No. & Title: Lecture – 2

Multiple Regression Model

and Extensions

Glossary

1. Multiple regression model

It is a regression relation between dependent variable Y and explanatory variables $X_2, X_3 \dots X_k$

2. Partial correlation coefficients

These are the coefficients attached with explanatory variables in the k variate multiple regression model (Denoted by β_2 , β_3 ... β_k)

3. Zero order or product moment correlation coefficient

These are Correlation coefficients between pairs of explanatory variables

e.g.
$$r_{ij} = Corr(X_i, X_j) i = 1, 2, ... k$$

 $j = 1, 2, ... k (i \neq j)$

4. Multiple correlation coefficient

It is the correlation Coefficient between independent variable Y with all the explanatory variables $X_2, X_3 \dots X_k$ in fact it is $R = R_{1\cdot 23\dots K} = \frac{cov(Y,\hat{Y})}{\sqrt{V(Y)\cdot V(\hat{Y})}}$

5. Multiple coefficient of determination

Denoted by \mathbb{R}^2 (square of multiple correlation coefficient. \mathbb{R}^2 always lies between 0 and 1.

6. Rank of a matrix

It is the number of independent rows or columns of the matrix.

7. Double log model

Log value of Y in terms of log values of all the explanatory variables

8. Log Lin model

It is a model with log values, of Y in terms of values of X's.

9. Lin log model

It is a model with values of Y expressed in terms of log value of X's

10. Reciprocal model
It is a model with value of Y expressed in terms of reciprocal
values of x
11. Homoscadasticity
It is uniform (constant) variance of disturbance term U.