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Academic Script 

1. Introduction 

Hello friends nice meeting you. Today we are discussing 

specialized techniques known as Dummy Variables techniques. 

Which are used for dealing with qualitative data. Mostly we have 

quantitative data, but many times we also have qualitative data. 

As for example sex, religion etc. for that we have to adopt 

separate methods. So all qualitative variables are to be 

converted in to quantitative by use of dummy variables. There 

are very nice applications for this techniques and we want to 

study this techniques in detail in this lecture. So let us start our 

lecture. 

While dealing with analysis of data collected, we find that the 

concerned variables are quantitative or qualitative. 

e.g.   

(1) Data connected with output, price, income, expenditure, cost, 

height, weight, blood pressure etc. are representing 

quantitative variables. This means that they are measured 

by means of some scaling units. 

(2) Data connected with sex, race, religion, marital status, 

educational status, caste structure, colours, strikes, wars 

etc. are representing qualitative variables. They are not 

measured by means of some scaling units. 

The question is how we can deal with the qualitative nature of 

these variables? 

By some approach we may introduce them so that they may be 

converted from qualitative into quantitative nature. Here we use 

what is called Dummy Variable or Categorical Variable or 

Dichotonomous Variables. 



We want to study in this lecture about regression analysis 

concerning such dummy variables. Let us consider some 

illustrations to begin with. 

(1)  One dummy independent variable 

Let     

    = Annual income of a person 

    = 1  If the person is male  

        = 0 if female 

Here D is the dummy variable representing sex which is a 

qualitative variable. 

(2) Two dummy independent variables 

 

 

 1 For Male 

= 0 For Female 

 = 1 For Married Person 

= 0 For Unmarried Person 

Here sex and marital status are represented by means of two 

dummy variables D1 and D2. 

(3) One explanatory variable and one dummy 

independent variable 

 

Annual Income 

=Years of Service 

 = 1 For Male 

= 0  For Female 

This is a mixture of explanatory variable i.e. service experience 

with qualitative variable sex. 

 (Note: In model (1) 

  



So that  =   Average Annual Income of male 

 Average Annual Income of female  

In Model (2) 

  

In Model (3) 

 =  

From the above presentation it may be clear that if we do not 

use dummy variables then we have to run separate regressions 

for male and female etc. Thus use of dummy variables simplifies 

the method by considering only one regression. 

Dummy variables occur in practice in three ways  

(1) Dummy independent (explanatory) Variables  

(2) Dummy dependent Variables 

(3) Mixture of both dummy dependent and independent 

variables 

At present we want to consider only the first category. 

(2) Some essential features of the dummy variables 

(1) If a qualitative variable has m categories (or classes) 

then include (m – 1) dummy variables. If this is not observed, 

there is multicollinearity in the model. Such a situation is called 

dummy variables trap. 

e.g. For the qualitative variable sex, if we define 

   = 1   For male 

  D1i = 0    Otherwise 

   = 1   For Female 

  D1i = 0    Otherwise 

Then if we have a sample 3 males and 2 females (with income 

and experience as other variables) we have the following matrix. 

   D1 D2 X 

M Y1 1 1 0 X1 



M Y2 1 1 0 X2 

F Y3 1 0 1 X3 

M Y4 1 1 0 X4 

F Y5 1 0 1 X5 

  

Here D2 = 1 – D1 

Which shows that there is multicollinearity which is dummy 

variables trap. Here only one dummy variables should be used. 

(2) In general, dummy variable can take any value z = a + b D 

(b   0) 

 So that if D = 0, z = a and if D = d, z = a + b  

 Thus (0, 1) can be replaced by (a, a + b) and its choice is purely 

arbitrary. 

The value 0 is called Base or Control or omitted category. 

(3) The co-efficient 
1

  attached to the dummy variable D1 is 

called Differential Intercept Co-efficient (DIC). The co-efficient 

attached with the explanatory variable (other than dummy) is 

called differential slope coefficient.  

(4) A regression model which contains explanatory variables 

which are exclusively dummy variables is called Analysis of 

Variance (ANOVA) model. 

A regression model which contains a mixture of both dummy 

explanatory variable as well as some explanatory variables is 

called Analysis of Covariance (ANCOVA) model. 

 

2. Some applications of dummy variables techniques 

(3.1) Combining two regressions 

This is also called pooling of cross section and time series data. 

Suppose that we consider bivariate regression for the data in 

two ranges of periods. First sample contains n1 observations, 



second one contains n2 observations. If we combine these two 

samples, we have (n1 + n2 = n) observations. 

We may think to run two separate regressions for both of them 

and also third one for the entire period. Instead of that we can 

run only one regression by using dummy variables technique. 

Sample (I)  ( )  (1) 

Sample (II)  ( )   (2) 

Sample (III)   

      ( )  (3) 

Here assumption is that slope does not change and also 

homoscadasticity in the respective regressions. 

In the combined model, 

 = 1 if  

= 0 if  

 = 1 if     

= 0 if   

 and  are the dummy variables. 

We can find OLSE of  for the first two models which are  

    (4) 

 (5) 

With              (6) 

            (7) 

Instead of running these two separate regressions, suppose we 

run the regression in (3) using dummy variables method, then 

we can write the normal equations as usual and by solving them 

we can obtain the estimator of   given by 

   (8)  



And      (9)  

Comparing these results with the above two separate 

regressions, we find that is unbiased estimator for  and  

<  (i = 1, 2) 

This shows that  is more efficient than  and . 

Which means that by using dummy variables technique not only 

that we can solve the problem of running separate regression, 

but also we can obtain estimator which is unbiased and more 

precise (i.e. more efficient). 

(3.2)     Interaction effects using Dummy Variables 

This is an interesting application for using dummy variables 

method. 

Let us consider the following model  

  (1) 

Where  Y = Literary rate 

X = Per capita Net State Domestic product  

We use two dummy variables D2 and  D3, where D2 is for 

Gender. 

and D3 is for residential status. 

D2  = 1  if Male 

= 0  if Female 

D3  = 1  if Urban 

= 0  if Rural 

Here DtX3 is the combined term (product of Dt and X3) showing 

interaction. 

You will notice that we would have used different regressions for 

urban males, urban females, dummy variables. In addition, here 

the model presented in (1) above also gives the interaction 



effect considering gender with residential status. (i.e. males 

from urban area have more literacy rate or not etc.). 

The above model given in (1) above is an example of additive 

model. 

We can also have a multiplicative model as shown  below. 

Yt = 
1

 + 
2

 D2t+  
3

 D3t + 
4

  (D2t. D3t) + Xt+ Ut   (2) 

The above extension given in (2) is also called Dummy 

Interaction due to the product term D2t. D3t. We can think of 

such dummy interaction when two or more qualitative variables 

are included in the model. 

(3.3)  Deseasonalisation of time series data 

In time series analysis, we have seen different methods to 

separate the seasonal component. Here dummy variables 

technique can be useful to deseasonlise the given time series. 

We collect time series data on the basis of months and quarters 

in a given year. Suppose that the data are collected on quarterly 

basis for n years. Thus we have 4n observations. Seasonal effect 

is a very important part under temporal factors, hence every 

time series is to be deseasonalised. 

Let  = Value of Y in the ith year and jth quarter 

(i = 1, 2, . . ni, j = 1, 2, 3, 4) 

We write  

               



then we have the model 

 

Where  

Here    is the disturbance term 

OLSE of  is given by  

 

With  

We have  

(Note that in the above presentation. sample matrix D is 

composed for 4 dummy variables defined by   = 1 if t 

occur in  

ith quarter i = 1, 2, 3, 4 

  = 0 otherwise) 

 

Where which is Symmetric Idempotent 

Matrix with MD = 0. 

is the deseasonalised series. 

Extension of the model 

In the above presentation, the deseasonalised series has a 

drawback that the components of add to zero. The real 

deseasonalised vector is where  

 



In fact in a time series data, there are other components of 

trend, cyclic fluctuations etc. Thus the above model is to be 

extended further. We write the model as  

We write the model as  

 

Here P is chosen suitably 

 

Where the elements of P are the powers of time. 

We may write the model as  

   

Where   

under usual conditions of homoscadasticity, we use OLS method 

to find  which is given by  

 

  

  

Here  

We are interested to find the estimate of   which is given by 

 

Where  

Then   

 



     

Hence  

Where  is an important matrix (but it is not 

symmetric), and TD=0. Series is the deseasonalised series. 

 

3. Piecewise Regression 

A very interesting application in dummy variables is what is 

called Piecewise regression. Suppose that a company gives 

remuneration to its sales employees (sales persons) as per their 

performance. This sales commission has a specific behavior that 

up to certain stage there is some amounts given as 

commissions, but after that stage the structure of commission 

stages. Thus we have two situations: Commission up to a given 

stage and commission after the given stage. This stage is called 

target or threshold. In both the cases we observe linearity, but 

these two linear functions are not the same. This is represented 

by what is known as Piecewise Regression. (Note that besides 

the sales, some other factors can also be effective but they are 

assumed to be represented by the stochastic disturbance term). 

This behavior is expressed clearly by the following diagram. 

 

 



 

Here is the target or threshold values for sales. Up to , the 

situation is labeled as (I) and beyond , the situation is labeled 

as (II). Not that both of them have linearity but under label (II) 

situation, the slope of line is steeper, thus indicating higher 

commission after when you increase sales as compared to 

threshold value. 

Both the above linear relationships in situations (I) and (II) are 

represented by a single equation as under 

 

Where  = Sales commission 

 = Volume of sales by the sales person 

 = Target or threshold value of sales 

 is the dummy variable such that 

 = 1 if >  

 = 0 if  <  

Assuming  as usual we get  

 

 = Mean sales commission upto the target  

And  

   



   = Mean sales commission beyond the target value 

. 

is the slope of the line in Segment I and  is the slope 

of the line in Segment II. Here advantage is that instead of two 

regressions segment wise, we can have only one regression 

dealing with the situation. 

(It may be noted here that this illustrates what is known as 

Spline function. Further extensions on these lead to what is 

known as piecewise polynomials of order k and so on). 

4. Dummy variables in Semilogarithmic regression: 

When we consider Log-lin model concerning quantitative 

variables, the co-efficient attached to explanatory variables give 

the elasticity measure. We want to know what happens if we use 

dummy variables model. 

Let us write our model as  

   (1) 

Where   = Literacy rate in percentage 

 = 1 if male 

= 0 if female 

Ln is logarithm to the natural base  

 is the disturbance term. 

Under the assumption E( ) = 0, we get E [ / = 1] = 

(2) 

and E [ /  = 0] =   (3) 

is the mean log literary rate and the slope co-efficient gives 

the difference in the mean log literacy rate of males and 

females. If we take antilog of 
1
 , what we obtain is not the mean 

but the median literacy rate of females. Similarly if we take 

antilog of (
1
 +

2
 ) we obtain the median literary rate of males. 

5. Further studies 



(1) What happens if we have dummy dependent variable? We 

shall study it separately with its relevant further extensions in 

the next lecture. 

(2) There are further studies related with  

(i) Random or varying parametric models  

(ii) Switching regression models 

(iii) Disequilibrium models etc. 

(Note: we end up this discussion here looking to the limitations of 

our syllabus.) 


