

[Academic Script]

Linear Regression and Multiple Linear Regression in SAS

Subject:

Course:

Paper No. & Title:

Unit No. & Title:

Business Economics

B. A. (Hons.), 5th Semester, Undergraduate

Paper – 502 Computational Techniques for Management

Unit – 3 Econometric Problem Solving

Lecture No. & Title:

Lecture – 3 Linear Regression and Multiple Linear Regression in SAS

Academic Script

1. Introduction

Hello friends! In this final session on SAS I'll be talking about few statistical techniques namely Regression analysis, Anova test, simple linear regression and multiple linear regression.

Linear regression is the starting point of econometric analysis. The linear regression model has a dependent variable that is a continuous variable, while the independent variables can take any form (continuous, discrete, or indicator variables). A simple linear regression model has only one independent variable, while a multiple linear regression model has two or more independent variables. The linear regression is typically estimated using OLS (ordinary least squares).

2. Regression Analysis

We can also perform Regression analysis between dependent variable and independent variables. The dependent variable here is mass per gallon which is dependent upon the independent variables weight, length and foreign. So the command used to perform this regression analysis is:

* Regression model - mpg is dependent variable and weight, length and foreign are

independent variables;

proc reg data=auto;

model mpg = weight length foreign;

run;

looking at the p values of the output statistical significance could be gauged. The screen shows the output of regression command executed.

The REG Procedure

Model: MODEL1

Dependent Variable: mpg

Number of Observations Read 26

Number of Observations Used 26

Analysis of Variance

Source	DF Sum of Mean F Value Pr > F Squares Square
Model	<.000 >3378.69701 126.23234 14.84 1
Error	22187.14915 8.50678

Corrected Total 25565.84615

Root	R-Sq	uare	
MSE	2.91664 0.6693	3	
Dependent Mean	Adj F	२-	
20.92308	Sq	0.6242	
Coeff Var	13 9	3982	
	10.9	5502	

Variable	DF	Parameter Parameter Estimate	Estimates Standard Error	t Value	Pr > t
Intercept	1	44.96858	9.32268	4.82	<.0001
Weight	1	-0.00501	0.00219	-2.29	0.0320
Length	1	-0.04306	0.07693	-0.56	0.5813
Foreign	1	-1.26921	1.63213	-0.78	0.4451

Here by looking on the output generated we can see that price and weight have negative relation. Whereas the next two variables those are length and foreign, are statistically insignificant. This can be inferred by looking at their p values which are above 0.5

3. Anova Test

Lastly we will perform ANOVA test where we will check the mean of mass per gallon for the category of data i.e. domestic and foreign is same or not. We can perform this test using proc glm and the command for the same would be:

* ANOVA test - if the mean mpg is the same for foreign and domestic cars;

```
proc glm data=auto;
```

class foreign;

```
model mpg = foreign;
```

run;

The GLM Procedure

Class Level Information Class Levels Values foreign 2 0 1

Number of Observations Read26Number of Observations Used26

The SAS System

The GLM Procedure

Dependent Variable: mpg

Model 1 90.6882591 90.6882591 0.0427 irror 24 475.1578947 19.7982456 0.0427 Corrected Total 25 565.8461538 0.0427 R-Square Coeff Var Root MSE mpg Mean 0.160270 21.266104.449522 20.92308 Source DF SS Square F Value Pr > F 90.68825 90.68825 4.580.0427	ource	DF	Sum of Squares	Mean Square F Value	Pr > F
Corrected Total 25 565.8461538 R-Square Coeff Var Root MSE mpg Mean 0.160270 21.266104.449522 20.92308 Source DF SS Square F Value Pr > F 90.68825 90.68825 4.58 0.0427 Type III Mean Type III Mean		-			
0.160270 21.266104.449522 20.92308 Source DF SS Square F Value Pr > F 90.68825 90.68825 4.58 0.0427 Type III Mean 4.58 0.0427	-				
Source DF SS Square F Value Pr > F 90.68825 90.68825 90.68825 4.58 0.0427 foreign 1 911 911 4.58 0.0427					
foreign 1 911 911 4.58 0.0427 Type III Mean	Source		SS Squa	re F Value	Pr > F
	foreign				0.0427
90.68825 90.68825	Source	DF	SS Squa	re F Value	Pr > F
foreign 1 911 911 4.580.0427	foreign				0.0427

Importing the csv file

So now let us start by importing the csv file needed

For that the command needed to be given is:

proc import out= work.data

```
datafile= "C:\Econometrics\Data\regression_auto.csv"
```

dbms=csv replace; getnames=yes; datarow=2;

run;

Now the data that we are using ofr this example contains the information shown on the screen.

make	mpg	weight	weight1	price	foreign	repairs	length
AMC	22	2930	2.93	4099	0	3	186
AMC	17	3350	3.35	4749	0	3	173
AMC	22	2640	2.64	3799	0	3	168
Audi	17	2830	2.83	9690	1	5	189
Audi	23	2070	2.07	6295	1	3	174
BMW	25	2650	2.65	9735	1	4	177
Buick	20	3250	3.25	4816	0	3	196
Buick	15	4080	4.08	7827	0	4	222
Buick	18	3670	3.67	5788	0	3	218
Buick	26	2230	2.23	4453	0	3	170
Buick	20	3280	3.28	5189	0	3	200
Buick	16	3880	3.88	10372	0	3	207
Buick	19	3400	3.4	4082	0	3	200
Cadillac	14	4330	4.33	11385	0	3	221
Cadillac	14	3900	3.9	14500	0	2	204
Cadillac	21	4290	4.29	15906	0	3	204
Chevrolet	29	2110	2.11	3299	0	3	163
Chevrolet	16	3690	3.69	5705	0	4	212
Chevrolet	22	3180	3.18	4504	0	3	193
Chevrolet	22	3220	3.22	5104	0	2	200
Chevrolet	24	2750	2.75	3667	0	2	179
Chevrolet	19	3430	3.43	3955	0	3	197
Datsun	23	2370	2.37	6229	1	4	170
Datsun	35	2020	2.02	4589	1	5	165
Datsun	24	2280	2.28	5079	1	4	170
Datsun	21	2750	2.75	8129	1	4	184

We can see that we have 26 observations of the cars, than mass per gallon (mpg) which will be a dependent variable we want to explain, weight of the car is shown in the next column besides which I have generated weight1 variable by diving the weight by 1000. Hence the weight now derived is in thousand pounds. Next is the price of the car in a particular year in hundreds. Next column shows whether it is foreign or not. And these are the variables that we will use as independent analysis.

4. Descriptive Statistics

Now the first thing we will do is to look at the descriptive statistics using proc means with mpg as dependent variable and weight1 price and foreign as independent ones.

* Descriptive statistics;

proc means data=data;

var mpg weight1 price foreign;

run;

The output would be as shown on the screen:

Variable	N	Mean	Std Dev	Minimum	Maximum
mpg	26	20.9230769	4.7575042	14.0000000	35.0000000
weight1	26	3.0992308	0.6950794	2.0200000	4.3300000
price	26	6651.73	3371.12	3299.00	15906.00
foreign	26	0.2692308	0.4523443	0	1.0000000

Here as we can see there 26 observation with mpg as 20.923 mean, weight is about 3000 pounds, 6651 for price and 0.29% car are foreign.

Detailed descriptive statistics

We can also look into more detailed descriptive statistics by using proc univariate and variable mpg.

* Detailed descriptive statistics;

proc univariate data=data;

var mpg;

run;

The output is shown on the Screen

The UNIVARIATE Procedure Variable: mpg Moments

		Sum	
Ν	26	Weights	26
Mean	20.9230769	Sum Obse	rvations 544
Std Deviation	4.75750419	Variance	22.6338462
Skewness	0.93547297	Kurtosis	1.79270004
		Corrected	
Uncorrected S	S 11948	SS	565.846154
		Std Erro	or
Coeff Variation	22.7380715	Mean	0.93302334

Basic Statistical Measures					
Location Variability					
Mean	20.92308	Std Deviation	4.75750		
Median	21.00000	Variance	22.6338		
Mode	22.00000	Range	21.0000		
Interquartile Range 6.00000					

Tests for Location: Mu0=0					
Test	Statistic	p Val	ue		
				<.	000
Student's t t 22	2.42503 Pr	> t		1	
		13	Pr	>=	M
Sign	Μ	<.000	1		
Signed Rank S	17	5.5 Pr>:	= S	5 <.	000

Quantiles	
Quantile	Estimate
90%	26
75% Q3	23
50% Median	21
25% Q1	17
10%	15
5%	14
1%	14
0% Min	14

Ex	treme (Observatio	ns
Lowest		Highest	
Value	Obs	Value	Obs
14	15	24	25
14	14	25	6
15	8	26	10
16	18	29	17
16	12	35	24

Here we can see so many statistical details like mean median and mode, the percentages, highest and lowest observations to outliers and can thus be determined.

5. Correlations

Next thing we can do is to find out correlation using proc corr, putting in equation of all the variables we have by executing the command:

```
*Correlations;
```

proc corr data=data;

```
var mpg weight1 price foreign;
```

run;

The output of executed command would look like:

The CORR Procedure

4 Variables: mpg weight1 price foreign

Simple Statistics Std Minimu Maximu Variable N MeanDev Sum m m					
mpg	26	20.92308	4.75750 544.00000	14.00000	35.00000
weight1	26	3.09923	0.6950880.58000	2.02000	4.33000
price	26	6652	3371 172945	3299	15906
foreign	26	0.26923	0.452347.00000	0	1.00000

Pearson Correlation Coefficients, $N = 26$						
	Prob > r under H0: Rho=0					
	mpg	weight1	price	foreign		
mpg	1.00000	-0.80816 -0.	.43846	0.40034		
		<.0001	0.0251	0.0427		
weigh	t1 -0.80816	1.00000	0.55607	-0.60107		

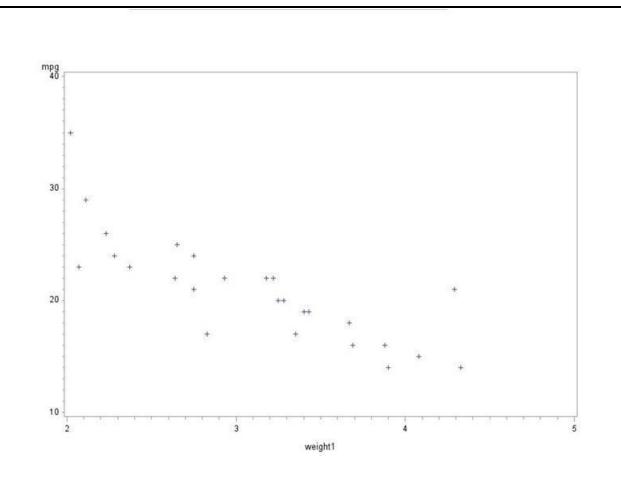
Pearson Correlation Coefficients, N = 26 Prob > |r| under H0: Rho=0

	mpg	weight1	price	foreign
	<.0001		0.0032	0.0012
price	-0.43846 0.0251	0.55607 0.0032	1.00000	0.08352 0.6850
foreign	0.40034	-0.60107	0.08352	1.00000
	0.0427	0.0012	0.6850	

Here we can see that the highest correlation is between weight and mass per gallon (mpg), which is the independent and dependent variable, is -0.8

6. Plotting the Data

Now we can also plot the data using proc gplot, and we are plotting mpg*weight1.


* Plotting the data;

proc gplot data=data;

plot mpg*weight1;

run;

So this is how it looks like when the data plotting command is executed as shown on the screen. On the X axis we have independent variable weight1 and on y axis we have dependent variable mass per gallon (mpg). And the observations are scattered in the XY plane. When we observe the data we can make out that it has a negative relation. So when we are trying to fit a regression line we will generate a line as close as possible to all the points.

7. Simple Linear Regression

So now let us talk about simple linear regression on this example. Here we will take one dependent variable and one independent variable as the definition of simple linear regression states. The command for the same would be:

* Simple linear regression;

proc reg data=data;

model mpg = weight1;

run;

The results are as shown on the screen:

The REG Procedure

Model: MODEL1 Dependent Variable: mpg

Number	of Observations	Read 26)
--------	-----------------	---------	---

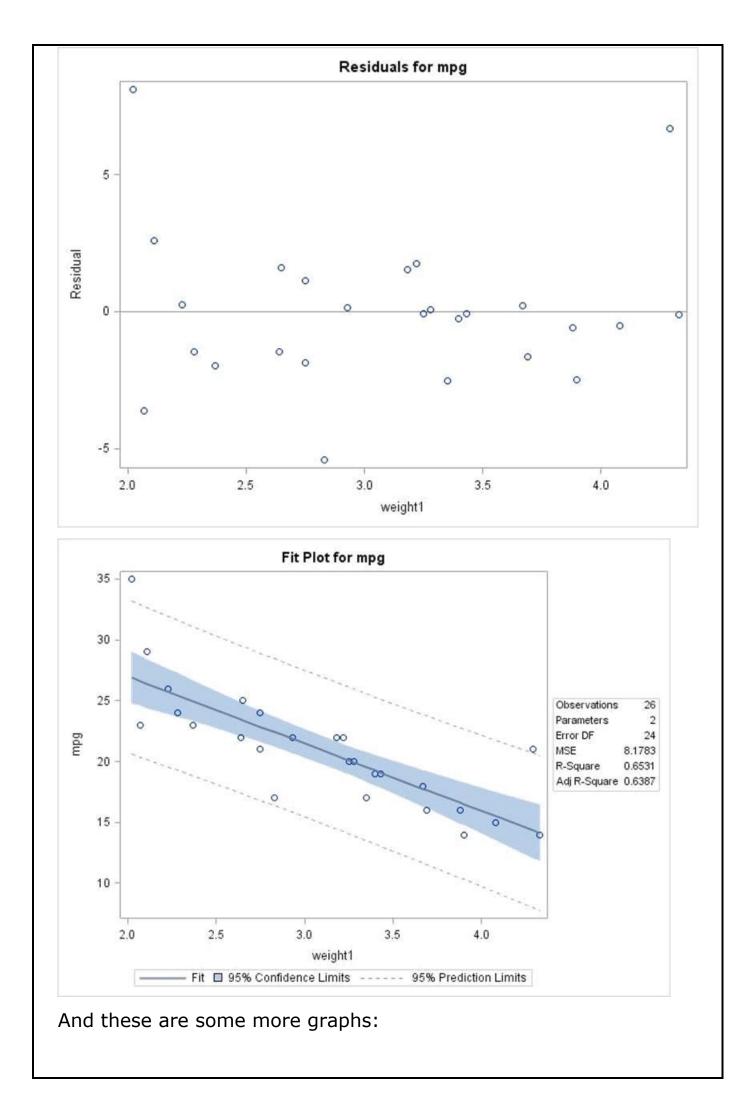
Number of Observations Used 26

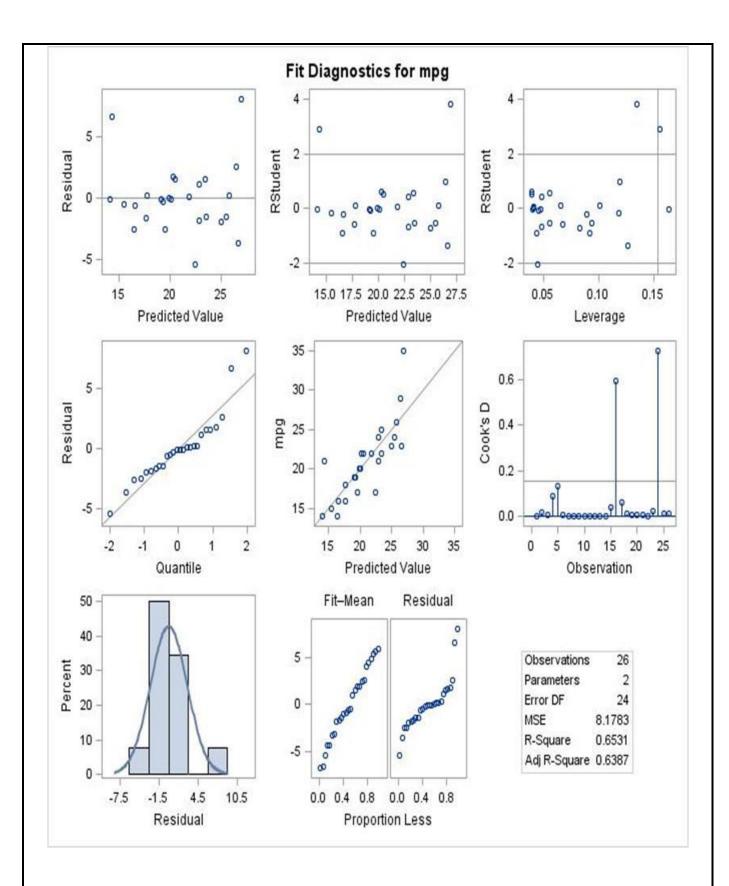
Source	Analysis of Varian DFSum of Mea Squares Squ	n F Value	Pr > F
Model	1 369.56777369.56	577745.19	<.0001
Error	24 196.27838 8.17	827	
Corrected Total	25 565.84615		

Root MSE	2.85977	R-Square	0.6531
Dependent Mean	20.92308	Adj R-Sq	0.6387
Coeff Var	13.66800		

Parameter Estimates

Variable DF Parameter Standard t Value Pr > |t| Estimates Error


Intercept	1	38.06646	2.61118	14.58	<.0001
weight1	1	-5.53150	0.82286	-6.72	<.0001

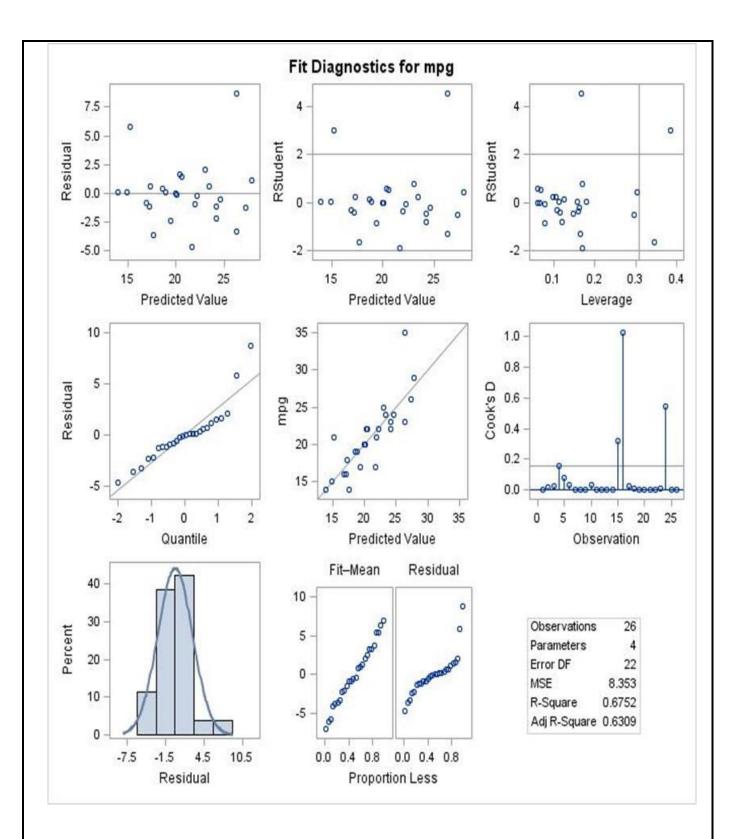

The third table shows parameter estimates on which we are going to concentrate. Notice that we have an intercept and next we have an independent variable weight1. The third column under the heading of parameter estimates are the coefficients of the variables. The interpretation of this figures says that if weight increases by one unit which in our case is one thousand pound than we will have a reduction of 5.53 mass per gallon, which is our dependent variable. Here I used the word reduction because the parameter estimate shows a negative sign. Now we want to know whether this coefficient is significantly different from zero and to do that we will look at the standard error, also the t value which is nothing but parameter divided by standard errorand lastly the P value which should be less than 0.05. As we can see that P value is less than 0.05 we can say that is significantly negative relationship. We can also look into the ANOVA table for Model, Error and total variation. Note that we have one independent variable so the degree of freedom DF is 1. Also the total variation comes by total observation-1 = 25. In this table also the P value is less than 0.05 which means it is significant in nature and hence also called significantly different than 0.

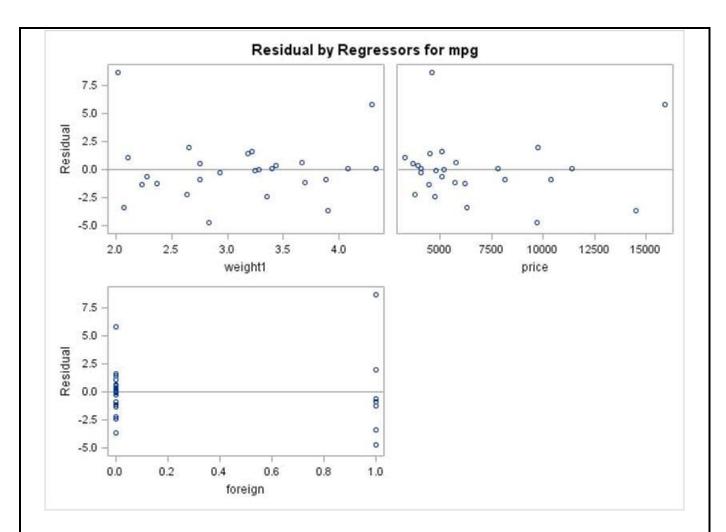
Now as we can see on the screen we have some interesting graphs.

This graph is somewhat similar to scattered plot diagram that we saw earlier. On the X axis we have independent variable weight1 and on y axis we have dependent variable mass per gallon (mpg). And the observations are scattered in the XY plane. The circles are the actual observations and the line is the regression line. The circles are the actual value for dependent value y and the regression line would contain the predicted values.

Now the next graph of residual is nothing but flattening of this regression line as a straight horizontal line. And we can see that the difference between actual observation and predicted value is the error. This is the best thing about simple linear regression that is has only one dependent and one independent variable and hence it can be easily plotted.

8. Multiple Linear Regression


So now let us talk about multiple linear regression on this example. Here we will take one dependent variable and more than one independent variable as the definition of multiple linear regression states. Here we will take mpg as dependent variable and weight1 price and foreign as independent variables. The command for the same would be: * Multiple linear regression; proc reg data=data; model mpg = weight1 price foreign; run; The results are as shown on the screen: The REG Procedure Model: MODEL1 Dependent Variable: mpg Number of Observations Read 26 Number of Observations Used 26 **Analysis of Variance** DF Sum of F Value Pr > FSource Mean Squares Square 3 382.07964 127.35988 Model 15.25 <.0001 22 183.76652 8.35302 Error Corrected Total 25 565.84615


Root MSE	2.89016	R-Square	0.6752
Dependent Mean	20.92308	Adj R-Sq	0.6309
Coeff Var	13.81326		

Parameter Estimates						
Variable DF Parameter Standard t Value Pr > t						
		Estimate	Error			
Intercept	1	42.16620	4.26475	9.89	<.0001	
weight1	1	-7.12111	1.60467	-4.44	0.0002	
price	1	0.00022578	0.00026535	0.85	0.4040	
foreign	1	-2.50713	2.05657	-1.22	0.2357	

The third table shows parameter estimates on which we are going to concentrate. Notice that we have an intercept and next we have now more independent variables; weight1, price and foreign. The third column under the heading of parameter estimates are the coefficients of the variables. The interpretation of this figures will again be same as mentioned earlier with only slightest difference in the value of weight1 as -7.12 which says that if weight increases by one unit which in our case is one thousand pound than we will have a reduction of 7.12 mass per gallon, which is our dependent variable. Now we want to know whether this coefficient is significantly different from zero and to do that we will look at the standard error, also the t value which is nothing but parameter divided by standard errorand lastly the P value which should be less than 0.05. As we can see that P value is less than 0.05 we can say that is significantly negative relationship. We can also look into the ANOVA table for Model, Error and total variation. Note that we have three independent variable so the degree of freedom DF is 3. Also the total variation comes by total observation -1 = 25. In this table also the P value is less than 0.05 which means it is significant in nature and hence also called significantly different than 0. Now as we can see on the screen we have some interesting graphs. But as there are many more variables added now it becomes really difficult to understand from graphs hence table

are better option.

9. Summary

So friends let us summarize today's session. Today we discussed the Analysis part of SAS in which we looked upon how to perform regression analysis on dependency of dependent variable over independent variables and ANOVA test.

Also, we learnt two important statistical techniques in SAS namely simple linear regression and multiple linear regression. We also saw the interpretation of different variables and values shown in the output tables as well as the graph plotted for the same.

I hope the session would have given you brief insights on the analysis part of SAS program. Thank you for joining us.