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1. Introduction. 

 

Many decision making problems involve a process 

that takes place in several stages. Here at each 

stage, the process is dependent on the strategy 

chosen. Thus dynamic programming is a method of 

solving problem based on the theory of multistage 

decision process, in which a sequence of 

interrelated decisions has to be made. 

Mathematically, a DPP is a decision making problem 

in n-variables, the problem being sub-divided into n 

sub-problems each sub-problem being a decision –

making problem in one variable only. Then the 

solution of the original problem is achieved by 

integrating the solutions of sub-problems. Thus it is 

a systematic, complete enumeration technique. 

 

2. Characteristics of Dynamic programming. 

The basic features which characterize the dynamic 

programming problem are as follows: 

 

Stage i:  



Each sub problem of the original problem is known 

as stage i. 

 

Alternative mi:  

In a given stage i, there may be more than one 

choice of carrying out a test. Each choice is known 

as alternative mi. 

 

Recursive function fi(xi):   

A function which links the measure of 

performance of interest of the current stage 

with the cumulative measure of performance 

of the previous stages/succeeding stages as a 

function of the state variable of current stage 

is known as the recurrence function of the 

current stage. 

Let 

f1(x1) = max[R(m1)] 

fi(xi) = max{R(mi) + fi-1[xi – c(mi)]}, i = 2, 3, … , n. 

 

for possible mi,when n is the total number of 

stages,R (mi) is the measure of performance ( like: 

Return) due to alternative mi at stage i, c(mi) is the 



cost/resource required for the alternative mi of the 

stage i and fi(xi) is the value of the measure of 

performance up to the current stage i from stage 1, 

if the amount of resource allocated up to the current 

stage is xi when forward recursion is used. 

 

Best recursive function value: In a given stage i, the 

lowest (minimization problem)/ highest 

(maximization problem) value of the recursive 

function for a given value of xiis known as the best 

recursive function value. 

 

Best alternative in a given stage i: In a given stage i 

, the alternative corresponding to the best recursive 

function value for a given value of xi is known as the 

best alternative for that value of xi. 

 

Backward recursive function: here computation 

begins from the last stage/ sub problem, and this 

stage will be numbered at stage 1, while the first 

sub problem will be numbered as the last stage. 

This type of recursive function is known as 

backward recursive function. 



 

Forward recursive function: While defining the 

stages of he original problem, the first sub problem 

will be numbered as stage 1 2 and the last sub 

problem will be numbered as the last stage. Then, 

the recursive function will be defined as per this 

assumption. This type of recursive function is known 

as forward recursive function. 

 

3. Dynamic programming algorithm: 

The computation procedure for solving a problem by 

dynamic programming approach can be summarized 

in the following ways.  

a) Identify the decision variables and specify 

objective function to be optimized under certain 

limitations, if any. 

b) Decompose the given problem in to a number of 

smaller sub problems (or stages). 

c) Identify the stage variables at each stage and 

write down the transformation function as a 

function of the state variables and decision 

variables at the next stage. 



d) Write down a general recursive relationship for 

computing the optimal policy. Decide whether 

forward or backward method is to follow to 

solve the problem. 

e) Construct appropriate stages to show the 

required values of the return   function at each 

stage. 

f) Determine the overall optimal policy or decisions 

and its value at each stage. There may be more 

than one such optimal policy. 

4. Applications of Dynamic programming. 

The dynamic programming can be applied to many 

real life situations. Some of them are given below: 

 

a) Capital budgeting problem 

b) Reliability improvement problem 

c) Stage-catch problem ( Shortest path problem) 

d) Cargo loading problem 

e) Minimizing total tardiness in single machine 

scheduling problem 

f) Optimal sub division problem 

g) Linear Programming Problem 

 



Example 1. Cargo Loading Problem: 

Bita Novelty Company has to load as cargo out of 

three items whose details are shown below. The 

maximum weight of the cargo is 5 tons. Find the 

optimal cargo loading using dynamic programming 

such that the total return is maximized. 

Item(i):                       1                2               3 

    Weight wi( in Tons):     2                1               4 

    Return ri( inRs.):       400             800           200 

Solution: Inthis problem, each item i treated as a 

stage starting from stage 1 to stage 3 for the item 1 

to 3, respectively. The maximum weight of the 

Cargo is 5 tons so, the weight allocated to the 

alternative in each of the stages are zero and the 

multiplier of the unit weight (less than or equal to 5) 

of the item corresponding to that stage. 

In stage 1, there are three alternatives and the 

weights allocated to those alternatives are 0, 2, and 

4. The range of values of the state variable in each 

stage is from 0 to 5(the maximum weight of the 

Cargo) with increment of 1. 

Stage 1. 

The recursive function of this stage is  



F1�x1� 	= 	
Allocated	weight

Weight	of	item	1
× Returnof	item	1 

= 	
����� !"#	$"%&ℎ!

2
× 400 

 

Table 1:  Calculation of f1(x1) for stage 1. 

 Alternative m1 Maxi  

f1(x1

)  

 

=  

+,
∗ 

 

 

Best 

alternativ

e No. 

 

.,
∗ 

State 

Variabl

e x1 

1 2 3 

Allocated weight( 

multiple of 2 less than 

or equal to 5) 

 

      0               2              

4 

0 0 ---- ---- 0 1 

1 0 ---- ---- 0 1 

2 0 400 ---- 400 2 

3 0 400 ---- 400 2 

4 0 400 800 800 3 

5 0 400 800 800 3 

 

In Table 1 the calculation of recursive function f1(x1) 

is shown. The Column 1 denote the value of state 



variable x1 which is from 0 to the capacity of the 

Cargo( here it is 5). Next three columns denote the 

values of  f1(x1) based on the three alternatives for 

allocation of the  weight. For item 1 the weight is 2 

tones, so possible allocation of weight will be in 

multiple of 2, and not more then 5, i.e. 0 , 2 and 4. 

The last column gives the value of maximum f1(x1) 

and corresponding best alternative, denoted by 

.,
∗.  

The calculation of column 2. We put allocation 

weight 0 in the expression of f1(x1) we get 0 answer 

for x1. Similarly for allocation weight 2, we put 2 in 

place of allocation weight in f1(x1) we get the answer 

400. Here we put 400 for those x1 which are at least 

equal to allocated weight and finally for allocation 

weight 4 the answer for the values becomes 800. 

Now the maximum value of f1(x1) for x1 = 0 and 1 

are 0 and it is for alternative 1 so we put 1 for .,
∗ for 

both the cases. 

For x1 = 2,  and 3 the maximum value is 400 , which 

is for alternative 2, so f1(x1) = 400 and	.,
∗ = 2. 

Similarly for x1 = 4,  and 5 the maximum value is 



800 and corresponding alternative is 3 hence f1(x1) 

= 800 and.,
∗ = 3. 

Now we move to stage 2. 

Stage 2. 

The Recursive function of this stage can be obtained 

as follow. 

+/�0/� = 	
Allocated	weight

Weight	of	item	2
× Return	on	item	2

+	f,�x/ − 	Allocated	weight� 

=	
Allocated	weight

1
× 800 +	 f,�x/ − 	Allocated	weight� 

In stage 2, the weight allocated to the alternatives 

are zero and the multiplier of the weight 1 of item 2( 

less than or equal to 5) then there are six 

alternatives and weights are allocated to those 

alternatives are 0, 1, 2, 3, 4, and 5. 

Table 2. Calculations for stage 2 

 Alternative m2  

 

+/
∗ 

 

 

./
∗ 

State 

Variabl

e x2 

1 2 3 4 5 6 

Allocated weight( multiple of 1 

less than or equal to 5) 

  0         1        2         3      4         

5 



0 0 ---- ---- ---- ---- ---- 0 1 

1 0 800 ---- ---- ---- ---- 800 2 

2 40

0 

800 160

0 

---- ---- ---- 160

0 

3 

3 40

0 

120

0 

160

0 

240

0 

---- ---- 240

0 

4 

4 40

0 

120

0 

200

0 

240

0 

320

0 

---- 320

0 

5 

5 40

0 

160

0 

200

0 

280

0 

320

0 

400

0 

400

0 

6 

 

 

Here we have 6 alternatives with possible allocation 

weight 0, 1, 2 ,3, 4, and 5. The calculations are 

made in similar way of the calculations in the Table 

1. The values of +/
∗ = max+/�0/� and ./

∗ 	

are listed in the last two columns. 

 

Stage 3. 

The Recursive function of this stage can be obtained 

as follow. 



+4�04� = 	
Allocated	weight

Weight	of	item	3
× Return	on	item	3

+	f/�x4 − 	Allocated	weight� 

=	
Allocated	weight

4
× 200 +	f/�x4 − 	Allocated	weight� 

In stage 3, the weight allocated to the alternative 

are zero and the multiplier of the weight 4 of item 2 

( less than or equal to 5) so there are two 

alternatives and the weight allocated to these 

alternatives are 0 and 4. 

 

        Table 3: Calculation for stage 3. 

 

State 

Variable 

x3 

Alternative m3  

+4
∗ 

 

.4
∗      1          2 

Allocated weight 

     0                     

4      

0 0 --- 0 1 

1 800 --- 800 1 

2 1600 --- 1600 1 

3 2400 --- 2400 1 

4 3200 200 3200 1 



5 4000 1000 4000 1 

 

Tracing the solution: 

In the last two columns the maximum value of +4�04� 

is 4000 for alternative 1 and its allocated weight is 

0, i.e x3 = 0 

Now for second unit  x2 = capacity – allocated 

weight for x3 

                                   = 5-0  = 5 

Therefore x2 = 5.  Now fromTable 2, for x2 = 5 the 

m2 = 6 , for which allocated weight is 5. 

therefore  for first unit x1 = capacity – allocated 

weight for x2 

                                      = 5 –5  = 0. 

Summary  of weight of items in the Cargo 

item:                   1                2                  3 

weight(in tons):    0                5                  0 

return:             400             800              200     

Total return:    0 × 400 + 5 × 800 + 0 × 200 = 4000 

 

5. Solution of linear programming problem (LPP) 

through Dynamic programming: 



Let us consider the generalized linear programming 

problem as 

Max Z = c1x1 + c2x2  + …. + cjxj + …+ cnxn 

subject to the conditions 

a11x1  + a12x2 + …. +a1jxj + …..+ a1nxn ≤ b1 

           …………………………………………………………….. 

ai1x1  + ai2x2 + ….+aijxj + …..+ ainxn ≤ bi 

             ……………………………………………………… 

am1x1  + am2x2 + …. +amjxj + …..+ amnxn ≤ bm 

xj ≥ 0, j = 1, 2, …,n. 

In this lpp the project j is treated as j, when j = 1, 

2, … ,n so we consider the total number of stages of 

the problem = n. At stage j, a value of the decision 

variable Xj is known as alternative. 

Here Xj is a continuous variable, there will be infinite 

number of alternatives in each stage j = 1,2, .... ,n. 

Here we use the method of back recursion to solve 

the problem. 

The project 1 is treated as stage 1 

The project 2 is treated as stage 2 and so on. 

Let us suppose that bij = state of the system with 

respect to constraint i and fj(b1j, b2j, … bij, … ,bmj) = 

the optimum objective function value at stage j. 



Now the objective function for stage n is  

fn( b1n, b2n, … bin, …,bmn) = max(cnxn), 0 ≤ ainxn≤bin, 

for i = 1, 2, … ,m. 

And the objective function for stage j is  

fj( b1j, b2j, … bij, …,bmj) = max(cjxj + fj+1[(b1j – 

a1jxj),(b2j – a2jxj),       

……(bmj – amjxj)]),  

over 0 ≤ aijxj≤bij;  0 ≤ bij ≤ bi for i = 1, 2, … ,m, j= 

1,2, …, n. 

Let us consider an example to understand the 

method. 

Example 2: 

Solve the LPP using dynamic programming. 

Max Z = 30x1 + 40x2, 

subject to  3x1 + 6x2 ≤ 210, 8x2 ≤ 240, x1 and x2 ≥ 

0. 

 

Solution: Here the number of decision variables is 

two so, we have two stages. Stage 1 for variable X1 

and stage 2 for x2. Since backward recursion is used 

to solve the problem. 

Stage 2 is considered first. 



The set of states of different stages are given in the 

following Table 4 

 

 

Table 4: Set of states of different stages 

State  j Decision 

Variable 

Set of 

States 

2 X2 { b12, b22} 

1 X1 {b11, b21} 

Based on the backward recursive function for stage 

2 with respect to x2 is given by 

f2(b12, b22) = max 40x2 subject to 0 ≤ 6x2 ≤b12, 0 ≤ 

8x2 ≤b22 

To maintain feasibility x2 should be the mini{ b12/6, 

b22/8 }. 

Hence the above objective function reduces to 

f2(b12, b22) = 40 min (b12/6, b22/8) 

andx*
2 = min { b12/6, b22/8 }.                                         

..(1)           

Now recursive function for stage 1 with respect to x1 

is  

f1( b11, b21) = max[30x1 + f2(b11 -3x1, b21)], 0 ≤ 3x1 

≤b11    ..(2) 



             = max[30x1 +40 min ((b11 -3x1)/6, b21/8)], 

0 ≤ 3x1 ≤b11 

This stage is the last in the series of backward 

recursion.  

As  b11 = 210  and b21 = 240, so to determine the 

upper limit for x1
* we have  

f1(x1/b11, b21)=max[f1(x1/210, 240)] 

                    = max[30x1 + 40min{(210-3x1) /6, 

240/8}] 

Now, to which in the ranges of x1 is defined, (210-

3x1) /6 can be as high as 30 or as low as 0. So, 

equate it to 30 as well as 0  and solve for x1 we get 

x1 = 10 and x1 = 70  

Therefore the range for x1 is 0 ≤ x1 ≤ 10 and 10 ≤ 

x1 ≤ 70. 

Now f1(x1/b11, b21) is re written as  

f1(x1/b11, b21)=max[30x1 + 40min{(210-3x1) /6, 

30}], 0≤x1≤10 

                    =max[30x1 + 40min{(210-3x1) /6, 

30}],10≤x1≤70 

f1(x1/210, 240)=max[30x1 + 40×30], 0≤x1≤10 

                      =max[30x1 + 40×(210-3x1) /6], 

10≤x1≤70 



f1(x1/210, 240)=max[30x1 + 1200], 0≤x1≤10 

                      =max[30x1 + 1400-20x1], 10≤x1≤70 

To maximize each of the above cases substitute 10 

for x1 we get 

f1(x1/210, 240)=max(1500, 1500) = 1500 

Therefore X1
* = 10 and f1(x1/210, 240)=1500.                

..(3)  

For tracing the value of x2
* we have from (2) and (1)  

b12 = b11 -3x1 = 210 - 3(10) = 210 -30 = 180 

b22 = b21 = 240 

therefore 

x2
* = min { b12/6, b22/8 }= min(180/6, 240/8) = 30            

..(4) 

Thus the optimum solution from (3) and (4) is 

X1 = 10, x2 = 30  and max Z = 1500. 

 

Summary: 

In Operations research there are many methods of 

solving decision problems. Dynamic programming is 

a method of solving a problem based on the theory 

of multistage decision process. There is a sequence 

of interrelated decisions has to be made at in each 

stage. In Dynamic programming  the original 



problem is sub-divided into n sub-problems. Each 

sub-problem is a decision –making problem in one 

variable only. The solution of the original problem is 

achieved by integrating the solutions of the sub-

problems. Thus it is a systematic, complete 

enumeration technique. Many types of decision 

problems can be solved by dynamic programming. 

 

Glossary: 

Stage i:   

Each sub problem of the original problem is known 

as stage i. 

 

Alternative mi:  

In a given stage i, there may be more than one 

choice of carrying out a test. Each choice is  known 

as alternative mi. 

 

State variable xi: 

 A possible value of resource within its permitted 

range at a given stage I is known as state variable 

xi.  

 



Recursive function fi(xi):  

 A function which links the measure of performance 

of interest  of the current stage with the cumulative 

measure of performance of the previous stages/ 

succeeding stages as a function of the state variable 

of the current stage is known as the recurrence 

function of the current stage. 

 

 

 

 

Best recursive function value:  

In a given stage i, the lowest (minimization 

problem)/ highest (maximization problem) value of 

the recursive function for a given value of xi known 

as the best recursive function value. 

 

Best alternative in a given stage i:  

In a given stage i , the alternative corresponding to 

the best recursive function value for a given value 

of xi is known on the best alternative for that value 

of xi. 

 



Backward recursive function:  

Here computation begins from the last stage/ sub 

problem, and this stage will be numbered at stage 

1, while the first sub problem will be numbered as 

the last stage. This type of recursive function is 

known as backward recursive function. 

 

Forward recursive function:  

While defining the stages of he original problem, the 

first sub problem will be numbered as stage 1 and 

last sub problem will be numbered as the last stage. 

Then , the recursive function will be defined as per 

this assumption. This type of recursive function is 

known as forward recursive function. 

 

  

 

 

 

 

 


