

[Academic Script]

 Subject : Business Economics

 Course : B.A., 4th Semester,

 Undergraduate

 Paper No. : 403

 Paper Title : Quantitative Techniques

 for Management

 Unit No. : 3

 & Title : Dynamic Programming

 Lecture No. : 1 (One)

 & Title : Dynamic Programming

Credits

Subject Expert

Dr. Rachna Gandhi

Asst. Prof.

K. S. School of Business Management,

Gujarat University,

Ahmedabad.

Subject Co-Ordinator

Dr. V. Chari

Professor, S. D. School of Commerce,

Gujarat University,

Ahmedabad.

Editing

Jaydip Gadhvi

General Asst.

Jagdish Jadeja

Multimedia

Gaurang Sondarva

Camera

Mukesh Soni

Technician

Mukesh Soni

Technical Assistants

Smita Bhatt

Archana Patel

Helper

Ambalal Thakore

Graphic Artist / Animator

Dilip Dave

Jaydip Gadhvi

Production Assistant & Editing Concept

Mukesh Soni

Producer

Dinesh Goswami

1. Introduction.

Many decision making problems involve a process

that takes place in several stages. Here at each

stage, the process is dependent on the strategy

chosen. Thus dynamic programming is a method of

solving problem based on the theory of multistage

decision process, in which a sequence of

interrelated decisions has to be made.

Mathematically, a DPP is a decision making problem

in n-variables, the problem being sub-divided into n

sub-problems each sub-problem being a decision –

making problem in one variable only. Then the

solution of the original problem is achieved by

integrating the solutions of sub-problems. Thus it is

a systematic, complete enumeration technique.

2. Characteristics of Dynamic programming.

The basic features which characterize the dynamic

programming problem are as follows:

Stage i:

Each sub problem of the original problem is known

as stage i.

Alternative mi:

In a given stage i, there may be more than one

choice of carrying out a test. Each choice is known

as alternative mi.

Recursive function fi(xi):

A function which links the measure of

performance of interest of the current stage

with the cumulative measure of performance

of the previous stages/succeeding stages as a

function of the state variable of current stage

is known as the recurrence function of the

current stage.

Let

f1(x1) = max[R(m1)]

fi(xi) = max{R(mi) + fi-1[xi – c(mi)]}, i = 2, 3, … , n.

for possible mi,when n is the total number of

stages,R (mi) is the measure of performance (like:

Return) due to alternative mi at stage i, c(mi) is the

cost/resource required for the alternative mi of the

stage i and fi(xi) is the value of the measure of

performance up to the current stage i from stage 1,

if the amount of resource allocated up to the current

stage is xi when forward recursion is used.

Best recursive function value: In a given stage i, the

lowest (minimization problem)/ highest

(maximization problem) value of the recursive

function for a given value of xiis known as the best

recursive function value.

Best alternative in a given stage i: In a given stage i

, the alternative corresponding to the best recursive

function value for a given value of xi is known as the

best alternative for that value of xi.

Backward recursive function: here computation

begins from the last stage/ sub problem, and this

stage will be numbered at stage 1, while the first

sub problem will be numbered as the last stage.

This type of recursive function is known as

backward recursive function.

Forward recursive function: While defining the

stages of he original problem, the first sub problem

will be numbered as stage 1 2 and the last sub

problem will be numbered as the last stage. Then,

the recursive function will be defined as per this

assumption. This type of recursive function is known

as forward recursive function.

3. Dynamic programming algorithm:

The computation procedure for solving a problem by

dynamic programming approach can be summarized

in the following ways.

a) Identify the decision variables and specify

objective function to be optimized under certain

limitations, if any.

b) Decompose the given problem in to a number of

smaller sub problems (or stages).

c) Identify the stage variables at each stage and

write down the transformation function as a

function of the state variables and decision

variables at the next stage.

d) Write down a general recursive relationship for

computing the optimal policy. Decide whether

forward or backward method is to follow to

solve the problem.

e) Construct appropriate stages to show the

required values of the return function at each

stage.

f) Determine the overall optimal policy or decisions

and its value at each stage. There may be more

than one such optimal policy.

4. Applications of Dynamic programming.

The dynamic programming can be applied to many

real life situations. Some of them are given below:

a) Capital budgeting problem

b) Reliability improvement problem

c) Stage-catch problem (Shortest path problem)

d) Cargo loading problem

e) Minimizing total tardiness in single machine

scheduling problem

f) Optimal sub division problem

g) Linear Programming Problem

Example 1. Cargo Loading Problem:

Bita Novelty Company has to load as cargo out of

three items whose details are shown below. The

maximum weight of the cargo is 5 tons. Find the

optimal cargo loading using dynamic programming

such that the total return is maximized.

Item(i): 1 2 3

 Weight wi(in Tons): 2 1 4

 Return ri(inRs.): 400 800 200

Solution: Inthis problem, each item i treated as a

stage starting from stage 1 to stage 3 for the item 1

to 3, respectively. The maximum weight of the

Cargo is 5 tons so, the weight allocated to the

alternative in each of the stages are zero and the

multiplier of the unit weight (less than or equal to 5)

of the item corresponding to that stage.

In stage 1, there are three alternatives and the

weights allocated to those alternatives are 0, 2, and

4. The range of values of the state variable in each

stage is from 0 to 5(the maximum weight of the

Cargo) with increment of 1.

Stage 1.

The recursive function of this stage is

F1�x1� 	= 	
Allocated	weight

Weight	of	item	1
× Returnof	item	1

= 	
����� !"#	$"%&ℎ!

2
× 400

Table 1: Calculation of f1(x1) for stage 1.

 Alternative m1 Maxi

f1(x1

)

=

+,
∗

Best

alternativ

e No.

.,
∗

State

Variabl

e x1

1 2 3

Allocated weight(

multiple of 2 less than

or equal to 5)

 0 2

4

0 0 ---- ---- 0 1

1 0 ---- ---- 0 1

2 0 400 ---- 400 2

3 0 400 ---- 400 2

4 0 400 800 800 3

5 0 400 800 800 3

In Table 1 the calculation of recursive function f1(x1)

is shown. The Column 1 denote the value of state

variable x1 which is from 0 to the capacity of the

Cargo(here it is 5). Next three columns denote the

values of f1(x1) based on the three alternatives for

allocation of the weight. For item 1 the weight is 2

tones, so possible allocation of weight will be in

multiple of 2, and not more then 5, i.e. 0 , 2 and 4.

The last column gives the value of maximum f1(x1)

and corresponding best alternative, denoted by

.,
∗.

The calculation of column 2. We put allocation

weight 0 in the expression of f1(x1) we get 0 answer

for x1. Similarly for allocation weight 2, we put 2 in

place of allocation weight in f1(x1) we get the answer

400. Here we put 400 for those x1 which are at least

equal to allocated weight and finally for allocation

weight 4 the answer for the values becomes 800.

Now the maximum value of f1(x1) for x1 = 0 and 1

are 0 and it is for alternative 1 so we put 1 for .,
∗ for

both the cases.

For x1 = 2, and 3 the maximum value is 400 , which

is for alternative 2, so f1(x1) = 400 and	.,
∗ = 2.

Similarly for x1 = 4, and 5 the maximum value is

800 and corresponding alternative is 3 hence f1(x1)

= 800 and.,
∗ = 3.

Now we move to stage 2.

Stage 2.

The Recursive function of this stage can be obtained

as follow.

+/�0/� = 	
Allocated	weight

Weight	of	item	2
× Return	on	item	2

+	f,�x/ − 	Allocated	weight�

=	
Allocated	weight

1
× 800 +	 f,�x/ − 	Allocated	weight�

In stage 2, the weight allocated to the alternatives

are zero and the multiplier of the weight 1 of item 2(

less than or equal to 5) then there are six

alternatives and weights are allocated to those

alternatives are 0, 1, 2, 3, 4, and 5.

Table 2. Calculations for stage 2

 Alternative m2

+/
∗

./
∗

State

Variabl

e x2

1 2 3 4 5 6

Allocated weight(multiple of 1

less than or equal to 5)

 0 1 2 3 4

5

0 0 ---- ---- ---- ---- ---- 0 1

1 0 800 ---- ---- ---- ---- 800 2

2 40

0

800 160

0

---- ---- ---- 160

0

3

3 40

0

120

0

160

0

240

0

---- ---- 240

0

4

4 40

0

120

0

200

0

240

0

320

0

---- 320

0

5

5 40

0

160

0

200

0

280

0

320

0

400

0

400

0

6

Here we have 6 alternatives with possible allocation

weight 0, 1, 2 ,3, 4, and 5. The calculations are

made in similar way of the calculations in the Table

1. The values of +/
∗ = max+/�0/� and ./

∗ 	

are listed in the last two columns.

Stage 3.

The Recursive function of this stage can be obtained

as follow.

+4�04� = 	
Allocated	weight

Weight	of	item	3
× Return	on	item	3

+	f/�x4 − 	Allocated	weight�

=	
Allocated	weight

4
× 200 +	f/�x4 − 	Allocated	weight�

In stage 3, the weight allocated to the alternative

are zero and the multiplier of the weight 4 of item 2

(less than or equal to 5) so there are two

alternatives and the weight allocated to these

alternatives are 0 and 4.

 Table 3: Calculation for stage 3.

State

Variable

x3

Alternative m3

+4
∗

.4
∗ 1 2

Allocated weight

 0

4

0 0 --- 0 1

1 800 --- 800 1

2 1600 --- 1600 1

3 2400 --- 2400 1

4 3200 200 3200 1

5 4000 1000 4000 1

Tracing the solution:

In the last two columns the maximum value of +4�04�

is 4000 for alternative 1 and its allocated weight is

0, i.e x3 = 0

Now for second unit x2 = capacity – allocated

weight for x3

 = 5-0 = 5

Therefore x2 = 5. Now fromTable 2, for x2 = 5 the

m2 = 6 , for which allocated weight is 5.

therefore for first unit x1 = capacity – allocated

weight for x2

 = 5 –5 = 0.

Summary of weight of items in the Cargo

item: 1 2 3

weight(in tons): 0 5 0

return: 400 800 200

Total return: 0 × 400 + 5 × 800 + 0 × 200 = 4000

5. Solution of linear programming problem (LPP)

through Dynamic programming:

Let us consider the generalized linear programming

problem as

Max Z = c1x1 + c2x2 + …. + cjxj + …+ cnxn

subject to the conditions

a11x1 + a12x2 + …. +a1jxj + …..+ a1nxn ≤ b1

 ……………………………………………………………..

ai1x1 + ai2x2 + ….+aijxj + …..+ ainxn ≤ bi

 ………………………………………………………

am1x1 + am2x2 + …. +amjxj + …..+ amnxn ≤ bm

xj ≥ 0, j = 1, 2, …,n.

In this lpp the project j is treated as j, when j = 1,

2, … ,n so we consider the total number of stages of

the problem = n. At stage j, a value of the decision

variable Xj is known as alternative.

Here Xj is a continuous variable, there will be infinite

number of alternatives in each stage j = 1,2, ,n.

Here we use the method of back recursion to solve

the problem.

The project 1 is treated as stage 1

The project 2 is treated as stage 2 and so on.

Let us suppose that bij = state of the system with

respect to constraint i and fj(b1j, b2j, … bij, … ,bmj) =

the optimum objective function value at stage j.

Now the objective function for stage n is

fn(b1n, b2n, … bin, …,bmn) = max(cnxn), 0 ≤ ainxn≤bin,

for i = 1, 2, … ,m.

And the objective function for stage j is

fj(b1j, b2j, … bij, …,bmj) = max(cjxj + fj+1[(b1j –

a1jxj),(b2j – a2jxj),

……(bmj – amjxj)]),

over 0 ≤ aijxj≤bij; 0 ≤ bij ≤ bi for i = 1, 2, … ,m, j=

1,2, …, n.

Let us consider an example to understand the

method.

Example 2:

Solve the LPP using dynamic programming.

Max Z = 30x1 + 40x2,

subject to 3x1 + 6x2 ≤ 210, 8x2 ≤ 240, x1 and x2 ≥

0.

Solution: Here the number of decision variables is

two so, we have two stages. Stage 1 for variable X1

and stage 2 for x2. Since backward recursion is used

to solve the problem.

Stage 2 is considered first.

The set of states of different stages are given in the

following Table 4

Table 4: Set of states of different stages

State j Decision

Variable

Set of

States

2 X2 { b12, b22}

1 X1 {b11, b21}

Based on the backward recursive function for stage

2 with respect to x2 is given by

f2(b12, b22) = max 40x2 subject to 0 ≤ 6x2 ≤b12, 0 ≤

8x2 ≤b22

To maintain feasibility x2 should be the mini{ b12/6,

b22/8 }.

Hence the above objective function reduces to

f2(b12, b22) = 40 min (b12/6, b22/8)

andx*
2 = min { b12/6, b22/8 }.

..(1)

Now recursive function for stage 1 with respect to x1

is

f1(b11, b21) = max[30x1 + f2(b11 -3x1, b21)], 0 ≤ 3x1

≤b11 ..(2)

 = max[30x1 +40 min ((b11 -3x1)/6, b21/8)],

0 ≤ 3x1 ≤b11

This stage is the last in the series of backward

recursion.

As b11 = 210 and b21 = 240, so to determine the

upper limit for x1
* we have

f1(x1/b11, b21)=max[f1(x1/210, 240)]

 = max[30x1 + 40min{(210-3x1) /6,

240/8}]

Now, to which in the ranges of x1 is defined, (210-

3x1) /6 can be as high as 30 or as low as 0. So,

equate it to 30 as well as 0 and solve for x1 we get

x1 = 10 and x1 = 70

Therefore the range for x1 is 0 ≤ x1 ≤ 10 and 10 ≤

x1 ≤ 70.

Now f1(x1/b11, b21) is re written as

f1(x1/b11, b21)=max[30x1 + 40min{(210-3x1) /6,

30}], 0≤x1≤10

 =max[30x1 + 40min{(210-3x1) /6,

30}],10≤x1≤70

f1(x1/210, 240)=max[30x1 + 40×30], 0≤x1≤10

 =max[30x1 + 40×(210-3x1) /6],

10≤x1≤70

f1(x1/210, 240)=max[30x1 + 1200], 0≤x1≤10

 =max[30x1 + 1400-20x1], 10≤x1≤70

To maximize each of the above cases substitute 10

for x1 we get

f1(x1/210, 240)=max(1500, 1500) = 1500

Therefore X1
* = 10 and f1(x1/210, 240)=1500.

..(3)

For tracing the value of x2
* we have from (2) and (1)

b12 = b11 -3x1 = 210 - 3(10) = 210 -30 = 180

b22 = b21 = 240

therefore

x2
* = min { b12/6, b22/8 }= min(180/6, 240/8) = 30

..(4)

Thus the optimum solution from (3) and (4) is

X1 = 10, x2 = 30 and max Z = 1500.

Summary:

In Operations research there are many methods of

solving decision problems. Dynamic programming is

a method of solving a problem based on the theory

of multistage decision process. There is a sequence

of interrelated decisions has to be made at in each

stage. In Dynamic programming the original

problem is sub-divided into n sub-problems. Each

sub-problem is a decision –making problem in one

variable only. The solution of the original problem is

achieved by integrating the solutions of the sub-

problems. Thus it is a systematic, complete

enumeration technique. Many types of decision

problems can be solved by dynamic programming.

Glossary:

Stage i:

Each sub problem of the original problem is known

as stage i.

Alternative mi:

In a given stage i, there may be more than one

choice of carrying out a test. Each choice is known

as alternative mi.

State variable xi:

 A possible value of resource within its permitted

range at a given stage I is known as state variable

xi.

Recursive function fi(xi):

 A function which links the measure of performance

of interest of the current stage with the cumulative

measure of performance of the previous stages/

succeeding stages as a function of the state variable

of the current stage is known as the recurrence

function of the current stage.

Best recursive function value:

In a given stage i, the lowest (minimization

problem)/ highest (maximization problem) value of

the recursive function for a given value of xi known

as the best recursive function value.

Best alternative in a given stage i:

In a given stage i , the alternative corresponding to

the best recursive function value for a given value

of xi is known on the best alternative for that value

of xi.

Backward recursive function:

Here computation begins from the last stage/ sub

problem, and this stage will be numbered at stage

1, while the first sub problem will be numbered as

the last stage. This type of recursive function is

known as backward recursive function.

Forward recursive function:

While defining the stages of he original problem, the

first sub problem will be numbered as stage 1 and

last sub problem will be numbered as the last stage.

Then , the recursive function will be defined as per

this assumption. This type of recursive function is

known as forward recursive function.

