

[GLOSSARY]

Subject Course	:	Business Economics B.A., 4th Semester,
	Paper No.	:
Paper Title	:	Quantitative Techniques
		for Management
Unit No.	:	3
& Title	:	Dynamic Programming
Lecture No.	:	1 (One)
& Title	:	Dynamic Programming

Credits

Subject Expert & Presenter

Dr. M. N. Patel Professor, Dept. of Statistics, I/c Director, K. S. School of Business Management, Gujarat University, Ahmedabad.

Subject Co-ordinator

Dr. M. N. Patel Professor, Dept. of Statistics, I/c Director, K. S. School of Business Management, Gujarat University, Ahmedabad.

Editing & Graphics

Akash Choudhary

Floor Assistant

Hemant Upadhyaya

Multimedia

Gaurang Sondarva

Camera

Maqbool Chavda

Technician

Mukesh Soni Kirit Dave

Technical Assistants & Sound Recording

Archana Patel Smita Bhatt

Helper & Support

Bharat Chauhan Jagdish Jadeja

Research

Pooja Khatri Assistant Professor, K. S. School of Business Management, Gujarat University, Ahmedabad.

Producer

Dr. P. P. Prajapati Dinesh Goswami

GLOSSARY

Stage i:

Each sub problem of the original problem is known as stage i.

Alternative m_i:

In a given stage i, there may be more than one choice of carrying out a test. Each choice is known as alternative m_{i.}

State variable x_i:

A possible value of resource within its permitted range at a given stage I is known as state variable x_i .

Recursive function f_i(x_i):

A function which links the measure of performance of interest of the current stage with the cumulative measure of performance of the previous stages/ succeeding stages as a function of the state variable of the current stage is known as the recurrence function of the current stage.

Best recursive function value:

In a given stage i, the lowest (minimization problem)/ highest (maximization problem) value of the recursive function for a given value of x_i known as the best recursive function value.

Best alternative in a given stage i:

In a given stage i , the alternative corresponding to the best recursive function value for a given value of x_i is known on the best alternative for that value of x_i .

Backward recursive function:

Here computation begins from the last stage/ sub problem, and this stage will be numbered at stage 1, while the first sub problem will be numbered as the last stage. This type of recursive function is known as backward recursive function.

Forward recursive function:

While defining the stages of he original problem, the first sub problem will be numbered as stage 1 and last sub problem will be numbered as the last stage. Then , the recursive function will be defined as per this assumption. This type of recursive function is known as forward recursive function.