

[Academic Script]

Assignment

Subject:

Course:

Paper No. & Title:

Unit No. & Title:

Business Economics

B.A., 4th Semester, Undergraduate

Paper – 403 Quantitative Techniques for Management

Unit - 2 Transportation & Assignment

Lecture No. & Title:

Lecture – 3 Assignment

Academic Script

1. Introduction

We have studied transportation problem in previous lectures. Transportation problem refers to allocating resources, machines, materials, capital etc. in a best possible way so that the costs are minimized or profits are maximized.

The assignment problem is the special case of the transportation problem in which the objective is to assign a number of origins to the equal number of destinations at a minimum cost, minimum time or maximum profit.

Let us understand basic difference between transportation and assignment problem.

Transportation Problem	Assignment Problem
This problem contains specific demand and requirement in columns and rows	-
The no. of rows may not be equal to the no. of columns.	It is a square matrix. The no. of rows must be equal to the no. of columns.
There is no restriction in the number of allotments in any row or column	

2. General Form of Assignment Problem

Consider a general assignment problem consisting of n origins (sources) O_1 , O_2 ... O_n and n destinations (sinks) D_1 , D_2 ... D_n . Let the cost or time for associating i^{th} origin to j^{th} destination is c_{ij} . The cost matrix can be shown as follows:

|--|

01	<i>c</i> ₁₁	<i>c</i> ₁₂	<i>c</i> _{1n}	1
02	<i>c</i> ₂₁	<i>c</i> ₂₂	c_{2n}	1
:				
<i>O</i> _n	<i>c</i> _{<i>n</i>1}	<i>c</i> _{<i>n</i>2}	c _{nn}	1
Requirement	1	1	1	

Let the amount of commodity supplied from *i* to *j* be denoted as x_{ij} .

Here x_{ij} is defined as

 $x_{ij} = 1$, if the i^{th} origin is associated to the j^{th} destination

 $x_{ij} = 0$, if the i^{th} origin is not associated to the j^{th} destination

Note:

If the number of rows is equal to the number of columns then it is called a **balanced assignment problem**.

But if the number of rows is not equal to the number of columns then it is called an **unbalanced assignment problem**.

3. The Hungarian Method

The following steps are followed to a given $n \times n$ cost matrix to find an optimal assignment.

1. Subtract the smallest element in each row from all the elements of its row.

2. Subtract the smallest element in each column from all the elements of its column.

3. Draw lines through appropriate rows and columns so that all the zero elements of the cost matrix are covered and the minimum number of such lines is used.

4. Tests for Optimality: (i) If the minimum number of covering lines is n, an optimal assignment of zeros is possible and we are finished. (ii) If the minimum number of covering lines is less

than n, an optimal assignment of zeros is not yet possible. In that case, proceed to Step 5.

5. Determine the smallest element not covered by any line. Subtract this element from each uncovered elements, and then add it to each elements where lines intersect. Return to Step 3

4. Example 1 with Solution

Example 1: Suppose you work as a sales manager for a toy manufacturer, and you currently have three salespersons located in different cities A, B and C. You want them to travel to three other cities: D, E and F. The table below shows the cost (Rs.) of bus tickets between cities they are located and the cities they have to travel.

	D	E	F
Α	250	400	350
В	400	600	350
С	200	400	250

Where should you send each of your salespersons in order to minimize bus ticket fare?

Solution: We shall solve this problem using Hungarian method: Step1: Subtract minimal element from all elements of that row.

	D	E	F
Α	250	400	350
В	400	600	350
С	200	400	250
Subtract 250 fr	om all elements	s of first row,	350 from all

elements of second row and 200 from all elements of third row.

	D	E	F
Α	250-250=0	400-250=150	350-250=100
В	400-350=50	600-350=250	350-350=0
С	200-200=0	400-200=200	250-200=50

Step2: Subtract minimal element from all elements of that column in the resultant matrix.

	D	E	F
Α	0	150	100
В	50	250	0
С	0	200	50

Subtract 0 from all elements of first column, 150 from all elements of second column and 0 from all elements of the third column.

	D	E	F
Α	0-0=0	150-150=0	100-0=100
В	50-0=50	250-150=100	0-0=0
C	0-0=0	200-150=50	50-0=50

Step3: Cover all the zeros of the matrix with the minimum number of horizontal or vertical lines

	D	E	F
Α		Û	100
В	50	100	0
С	0	50	50

Number of minimum number lines = No. of rows, optimal solution can be obtained.

Step4: Assign to zeroes

	D	E	F
Α	0	0	100
В	50	100	0
С	0	50	50

	D	E	F
Α	0	0	100
В	50	100	0
С	0	50	50

	D	E	F
Α	0	0	100
В	50	100	0
D	50	100	U
C	0	50	50

	D	<u>E</u>	F
Α	Ø	0	100
В	50	100	0
С	0	50	50

Here is the same assignment made to the original cost matrix.

	D	E	F
Α	250	400	350
В	400	600	350
C	200	400	250

Thus final allocation and corresponding allocation cost is tabulated below:

Assignment	Assignment Cost (Rs.)
Salesman from city A to city E	400
Salesman from city B to city F	350
Salesman from city C to city D	200
Total allocation cost	950

5. Example 2 with Solution

Example2: In a factory 3 jobs are to be assigned to 3 machines. The time (in hrs) taken by machine to complete the assigned job is given by the below matrix. Assign the jobs to the machines in such a way that total time taken is minimum.

	Machines		
Jobs	Ι	II	III
1	19	28	31
2	11	17	16
3	12	15	13

Solution: We shall solve this problem using Hungarian method:

Step1: Subtract minimal element from all elements of that row.

	Machines		
Jobs	Ι	II	III
1	19	28	31
2	11	17	16
3	12	15	13

Subtract 19 from all elements of first row, 11 from all elements

of second row and 12 from all elements from third row.

	Machines		
Jobs	I	II	III
1	19-19=0	28-19=9	31-19=12
2	11-11=0	17-11=6	16-11=5
3	12-12=0	15-12=3	13-12=1

Step2: Subtract minimal element from all elements of that column in the resultant matrix.

	Machines		
Jobs	Ι	II	III
1	0	9	12
2	0	6	5
3	0	3	1

Subtract 0 from all elements of first column, 3 from all elements of second column and 1 from all elements of third column.

	Machines		
Jobs	Ι	II	III

1	0-0=0	9-3=6	12-1=11
2	0-0=0	6-3=3	5-1=4
3	0-0=0	3-3=0	1-1=0

Step3: Cover all the zeros of the matrix with the minimum number of horizontal or vertical lines.

		Machines		
Jobs		II	III	
1	0	6	11	
2	0	3	4	
2		0	0	
5	Y	0	0	

Number of lines = 2, Number of rows = 3

As number of lines < number of rows, optimal assignment of zeroes is yet not possible.

The smallest element not covered by any line is 3. Subtract 3 from each uncovered elements, and then add it to each elements where lines intersect.

	Machines		
Jobs	Ι	II	III
1	0	3	8
2	0	0	1
3	3	0	0

We shall again cover all zeroes with minimum number of lines.

	Machines		
Jobs	I.	I	III
1	0	3	8
2	0	D	1
3			0
		Υ	0

Number of lines = 3, Number of rows = 3

As number of lines = number of rows, optimal assignment of zeroes is now possible.

Step4: Assign to zeroes.

		Machines	
Jobs	L.	II	III
1	0	3	8
	$\overline{\otimes}$		

2	0	0	1	
3	3	Ø	0	

Here is the same assignment made to the original cost matrix.

	Machines					
Jobs	I	II	III			
1	19	28	31			
2	11	17	16			
3	12	15	13			

Thus final allocation and corresponding time is tabulated below:

Assignment	Time (hrs.)
Job 1 to Machine I	19
Job 2 to Machine II	17
Job 3 to Machine III	13
Total allocation time	49

6. Example 3 with Solution

Example3: In a workshop there are 4 mechanics and 5 jobs. Time taken to complete each job is given below. Solve this assignment problem.

	Jobs				
Mechanics	1	2	3	4	5
Α	9	6	5	4	2
В	7	6	3	2	8
C	6	7	4	5	3
D	2	6	4	9	6

Solution: In this assignment problem there are 4 rows and 5 columns. So, it is an unbalanced assignment problem. Here

there is one less number of row compared to number of column. To convert it into a balanced assignment problem, we shall add a dummy row with zero cost.

			Jobs		
Mechanics	1	2	3	4	5
Α	9	6	5	4	2
В	7	6	3	2	8
С	6	7	4	5	3
D	2	6	4	9	6
Dummy	0	0	0	0	0

We shall solve this problem using Hungarian method:

Step1: Subtract minimal element from all elements of that row.

			Jobs		
Mechanics	1	2	3	4	5
Α	9	6	5	4	2
В	7	6	3	2	8
С	6	7	4	5	3
D	2	6	4	9	6
Dummy	0	0	0	0	0

	Jobs				
Mechanics	1	2	3	4	5
Α	9-2=7	6-2=4	5-2=3	4-2=2	2-2=0
В	7-2=5	6-2=4	3-2=1	2-2=0	8-2=6
С	6-3=3	7-3=4	4-3=1	5-3=2	3-3=0
D	2-2=0	6-2=4	4-2=2	9-2=7	6-2=4
Dummy	0-0=0	0-0=0	0-0=0	0-0=0	0-0=0

Step2: Subtract minimal element from all elements of that column in the resultant matrix.

	Jobs				
Mechanics	1	2	3	4	5
Α	7	4	3	2	0
В	5	4	1	0	6
С	3	4	1	2	0
D	0	4	2	7	4
Dummy	0	0	0	0	0

	Jobs				
Mechanics	1	2	3	4	5

Α	7-0=7	4-0=4	3-0=3	2-0=2	0-0=0
В	5-0=5	4-0=4	1-0=1	0-0=0	6-0=6
С	3-0=3	4-0=4	1-0=1	2-0=2	0-0=0
D	0-0=0	4-0=4	2-0=2	7-0=7	4-0=4
Dummy	0-0=0	0-0=0	0-0=0	0-0=0	0-0=0

Step3: Cover all the zeros of the matrix with the minimum number of horizontal or vertical lines.

Jobs				
1	2	3	4	5
7	4	3	2	0
5	4	1	0	6
3	4	1	2	0
0	4	2	7	4
	0	0	0	0
	0		1 2 3 7 4 3 5 4 1 3 4 1 0 4 2 0 0 0	123474325410341204270000

Number of lines = 4, Number of rows = 5

As number of lines < number of rows, optimal assignment of zeroes is yet not possible.

The smallest element not covered by any line is 1. Subtract 1 from each uncovered elements, and then add it to each elements where lines intersect.

	Jobs								
Mechanics	1	1 2 3 4 5							
Α	6	3	2	1	0				
В	5	4	1	0	7				
С	2	3	0	1	0				
D	0	4	2	7	5				
Dummy	0	0	0	0	1				

We shall again cover all zeroes with minimum number of lines.

	Jobs						
Mechanics	1	2	3	4	.5		
Α	6	3	2	1	D		
В	5	4	ĺ	Û	7		
С	2	3	Û	1	0		
D	Û	4	2	7	5		
Dummy	0	0	0	0			
Number of lines = 5, Number of rows = 5							

As number of lines = number of rows, optimal assignment of zeroes is now possible.

Step4: Assign to zeroes

	Jobs					
Mechanics	1	2	3	4	5	
Α	6	3	2	1	0	
В	5	4	1	0	7	
С	2	3	0	1	Ø	
D	0	4	2	7	5	
Dummy	Ø	0		Ø	1	

Here is the same assignment made to the original cost matrix.

	Jobs					
Mechanics	1	2	3	4	5	
Α	9	6	5	4	2	
В	7	6	3	2	8	
С	6	7	4	5	3	
D	2	6	4	9	6	
Dummy	0	0	0	0	0	

Thus final allocation and corresponding time is tabulated below:

Assignment	Time (hrs.)
Mechanic A to Job 5	2
Mechanic B to Job 4	2
Mechanic C to Job 3	4

Mechanic D to Job 1	2
Total allocation cost	10

Here is important note that Job 2 is assigned to dummy mechanic, so Job2 will remain unattended.

7. Summary

- The assignment problem is the special case of the transportation problem in which the objective is to assign a number of origins to the equal number of destinations at a minimum cost, minimum time or maximum profit.
- It is a square matrix. The no. of rows must be equal to the no. of columns.
- The demand and requirement in each column or row is one.
- There should be only one allotment in each row and each column

• General form of A.P.

The cost matrix can be shown as follows:

	D1	D2	 Dn	Supply
01	<i>c</i> ₁₁	<i>c</i> ₁₂	<i>c</i> _{1n}	1
02	<i>c</i> ₂₁	<i>c</i> ₂₂	<i>C</i> _{2<i>n</i>}	1
÷				
On	<i>c</i> _{<i>n</i>1}	<i>c</i> _{n2}	C _{nn}	1
Requirement	1	1	1	

 Here x_{ij} is the amount of commodity supplied from i to j and defined as

 $x_{ij} = 1$, if the *ith* origin is associated to the *jth* destination

 $x_{ij} = 0$, if the *ith* origin is not associated to the *jth* destination

- If the number of rows is equal to the number of columns then it is called a **balanced assignment problem**.
- But if the number of rows is not equal to the number of columns then it is called an **unbalanced assignment** problem.
- Unbalanced problem are converted into balanced assignment problem by adding a dummy row or column.