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1. Introduction

Regression analysis is a technique of predicting a dependent
variable using one or more independent variables.

We have already studied Simple regression. The model has
one dependent and one independent variable. It's equation is

given as

Y - |r.-||'_| + hl X+ e
where Y is the response or dependent variable and X is the

independent or explanatory or predictor variable.

Here f; is the intercept of the line, f,is the regression coefficient

and e is the residual or error term.

Eg.
e Independent: First year mileage for a certain car model;

Dependent: Maintenance cost.

2. Logarithmic transformation of variables

Considering the simple bivariate linear model ¥, = &, + 8, X,,
there are four possible combinations of transformations involving
logarithms: the linear case with no transformations, the linear-

log model, the log-linear model, and the log-log model.
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(Remember that we are using natural logarithms, where the base
ise = 2.71828.)

3. Why use logarithmic transformations of variables?

Logarithmically transforming variables in a regression model is a
very common way to handle situations where a non-linear
relationship exists between the independent and dependent
variables. Using the logarithm of one or more variables instead of
the un-logged form makes the effective non-linear relationship,
while  still preserving the Ilinear model. Logarithmic
transformations are also a convenient means of transforming a
highly skewed variable into one that is more approximately

normal.

4. Interpreting coefficients in models with logarithmic

transformations

1 Linear model: ¥, = &, + 5 X,
The coefficient #; gives us directly the change in Y for a one-unit

change in X.

2 Linear-log model: ¥, = &, + bfugi,

In the linear-log model, the literal interpretation of the estimated
coefficient £, is that a one-unit increase in logX will produce an
expected increase of #;, unitsin Y.

The expected change in Y associated with a p% increase in X can
be calculated as # - log ([100 + p]/100). So to work out the

expected change associated with a 10% increase in X, multiply f,




by log (110/100) = log (1.1) = .095. In other words, 0.095#; is
the expected change in Y when X is multiplied by 1.1, i.e. when X

increases by 10%.

3 Log-linear model: JfogY, = b, + 6, X,

In the log-linear model, the literal interpretation of the estimated
coefficient #; is that a one-unit increase in X will produce an
expected increase of f; unitsin log Y.

The effect of a c-unit increase in X is to multiply the expected

value of Y by e*c#,. So the effect for a 5-unit increase in X would

be e*5f;.

4 Log-log model: fog¥. = b+ bilogX,

The interpretation is given as an expected percentage change in
Y when X increases by some percentage. Such relationships,
where both Y and X are log-transformed, are commonly referred
to as elastic in econometrics, and the coefficient of log X is
referred to as an elasticity. So in terms of effects of changes in X
on Y (both unlogged):

e multiply X by e will multiply expected value of Y by e* &,

e To get the proportional change in Y associated with a p percent

increase in X, calculate a = log ([100 + p]/100) and take e* af;

5. Reciprocal Transformation
¥. = by + by (T}

If the relationship between Y and X is curvilinear, as in the case

of the Phillips curve, this model generally gives a good fit.

6. Example




An experiment result of number of bacteria as per the number of

dose is given below. Fit a curve »= ¢ **and estimate the

number of bacteria for 16th dose.

Dose |Bacteria
35500
21100
19700
16600
14200
10600
10400
6000
5600
10 3800
11 3600
12 3200
13 2100
14 1900
15 1500
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Solution:

Dose is the independent variable x and Number of bacteria is the
dependent variable ¥ .

The curve to be fitted is y = ¢ ™+,

Taking natural logarithmic transformation, we get ¥=a+bx

where Y =1n v,

Dose ¥ | Bacteriay | ¥Y=Iny

35500 10.4773
21100 9.95703
19700 9.88837
16600 9.71716
14200 9.561
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This data was analyzed using SPSS software and following results

were obtained.

6 10600 9.26861
7 10400 9.24956
8 6000 8.69951
9 5600 8.63052
10 3800 8.24276
11 3600 8.18869
12 3200 8.07091
13 2100 7.64969
14 1900 7.54961
15 1500 7.31322

Table 1: Model Summary

Table 1 gives the value of R square which is 0.988, indicating

that the data exhibit strong regression relationship. The value of

Model

R Square

Adjusted R

Square

Std. Error of the

Estimate

.994

.988

.987

.110017408

adjusted R Square is 0.987.

Table 2: ANOVA

Model

Sum of Squares D f

Mean Square F

Sig.

Regression
Residual

Total

13.359
157

13.516

13

14

13.359
.012

1103.677

.000°

Table 2 gives the ANOVA analysis which provides the statistical
tests for the overall model fit in terms of the F ratio. Here F ratio
is 1103.677 and significance level is 0.000 which indicates that

the model is a good fit.

Table 3: Coefficients




Model Unstandardized Coefficients Standardized t Sig.

Coefficients

B Std. Error Beta
(Constant) 10.578 .060 176.958 .000
1
Dose -.218 .007 -.994 -33.222 .000

Using Table 3 we get the fitted equation:

Ln bacteria = 10.579 -0.218 (Dose)

Here -0.218 is the regression coefficient of dose which indicates
that with every increase of a dose, the In- bacteria decreases by
0.218.

We want to estimate number of bacteria for 16 doses,

Ln bacteria = 10.579 -0.218 (16) = 7.091

Thus, number of bacteria = «"¥1! = 1201.10 = 1201

7. Summary

Regression analysis is a technique of predicting a dependent

variable using one or more independent variables.

Logarithmic transformation of variables

Considering the simple bivariate linear model ¥, = 5, + 8, X,,
there are four possible combinations of transformations involving
logarithms: the linear case with no transformations, the linear-

log model ¥, = &, + & fugX,, the log-linear model fog¥ = &, +6,.X,

and the log-log model [fog¥ = by + bjlogX .

Why use logarithmic transformations of variables?

Logarithmically transforming variables in a regression model is a
very common way to handle situations where a non-linear
relationship exists between the independent and dependent
variables. Using the logarithm of one or more variables instead of

the un-logged form makes the effective relationship non-linear,




while still preserving the linear model. Logarithmic
transformations are also a convenient means of transforming a
highly skewed variable into one that is more approximately

normal.

Reciprocal Transformation: ¥, = 5, + #; (T)

If the relationship between Y and X is curvilinear, as in the case

of the Phillips curve, this model generally gives a good fit.




