

[Glossary] [Concept of Level set & Partial Differentiation]

Subject: Business Economics

Course: B.A., 2nd Semester,

Undergraduate

Paper No. & Title: Paper – 202 (Two Zero two)

Mathematics for Business

Economics

Unit No. & Title: Unit - 5

Functions of two variables

Lecture No. & Title: 1(One):

Concept of Level set & Partial

Differentiation

Glossary:

Endogenous Variable: Variable that is derived internally.

Exogenous Variable: Variable that is derived externally.

Homogeneous Functions: A function $f: \mathbb{R}^n \to \mathbb{R}$ satisfying the condition $f(tx_1, tx_2,..., tx_n) = t^k f(x_1, x_2,..., x_n)$ for some fixed k is called a homogeneous function of degree k in n variables.

Homothetic Functions: A monotonic transformation of a homogeneous function is called homothetic function.

Level Curve: The Graphical Representation of a Level Set of R^2 is called a Level Curve in R^2 .

Level Set: Let f be a function of two variables. A collection of points defined by $L_c(f) = \{(x,y): f(x,y) = c\}$ for some fixed $c \in R$ is called a Level Set of function f in R^2 for the value c and similarly a level set in R^3 can also be defined.

Level Monotonically Increasing Function: Surface: The Graphical Representation of a Level Set of R^3 is called a Level Surface in R^3 .

Monotonically Decreasing Function: A real valued function $f: R \to R$ is said to be monotonically decreasing function if $x_1 \le x_2 \Rightarrow f(x_1) \ge f(x_2)$ for all $x_1, x_2 \in R$.

A real valued function $f: R \to R$ is said to be monotonically increasing function if $x_1 \le x_2 \Rightarrow f(x_1) \le f(x_2)$ for all $x_1, x_2 \in R$.

Partial Derivatives: The process of differentiating a function of several variables with respect to a variable keeping all other variables fixed is called Partial Differentiation. Suppose f is a real valued function of two independent variables and (x_0, y_0) is a point in its domain. The First Order Partial Derivative of f with respect to f at point f at point f is defined as

Derivative of f with respect to x at point (x_0, y_0) is defined as $\lim_{h\to 0} \frac{f(x_0+h,y_0)-f(x_0,y_0)}{h}$, provided this limit exists. This First Order

Partial Derivative of f w.r.t. x at point (x_0, y_0) is denoted by

$$f_xig(x_0,y_0ig)$$
 or $rac{\partial f}{\partial x}ig(x_0,y_0ig)$ or D_xf .