

[Glossary]

Manipulations of Matrices and Determinants

Subject:

Business Economics

Course:

Paper No. & Title:

B. A. (Hons.), 2nd Semester, Undergraduate

Paper – 202 Mathematics for Business Economics

Unit No. & Title:

Lecture No. & Title:

Unit – 4 Linear Algebra

Lecture – 2 Manipulations of Matrices and Determinants

Glossary

Cancellation law for multiplication and addition of matrices:

Cancellation law for multiplication means:

If AB = AD then B = D. This is false for Matrix Multiplicatin.

Cancellation law for addition means:

If A + B = A + D then B = D. This is true for Matrix addition.

Determinant of a square matrix

The determinant of a $n \times n$ square matrix $\mathbf{A} = [\mathbf{a}_{ij}]$ is defined by:

 $|A| = \sum_{i=1}^{n} a_{ij} C_{ij}$ where C_{ij} is the cofactor of a_{ij} defined by

 $C_{ij} = (-1)^{i+j} M_{ij}$ where M_{ij} is the minor of matrix A i.e. the determinant of the $(n-1) \times (n-1)$ matrix formed by suppressing ith row and the jth column of matrix A.

Adjoint of a square matrix:

Adjoint of a $n \times n$ square matrix $A = [a_{ij}]$, is defined and denoted by:

$$Adj(A) = \left[C_{ij}\right]^T$$

where $C_{ij} = (-1)^{i+j}M_{ij}$ and M_{ij} is the minor that is the determinant of $(n-1)\times(n-1)$ matrix obtained by suppressing the ith row and jth column of $A = [a_{ij}]$

Inverse of a square matrix:

Inverse of a $\Box \times n$ square matrix A is another square matrix B such that AB = BA = I. It is not necessary that such a matrix B

exists. If it exsits it is denoted by A^{-1} , and in this case we say that matrix A is invertible. Thus when A is invertible we have $AA^{-1} = A^{-1}A = I$

Row rank of a matrix:

Suppose $A = [a_{ij}]$, is a $m \times n$ matrix. We define the row-rank of a A as the maximum number of linearly independent row vectors of $= [a_{ij}]$.

Column rank of matrix:

Column-rank of $A = [a_{ij}]$ is the maximum number of linearly independent column-vectors of A.

Rank of a matrix:

Suppose $A = [a_{ij}]$, is a $m \times n$ matrix. We define the row-rank of a A as the maximum number of linearly independent row vectors of $= [a_{ij}]$. Similarly column-rank of A is the maximum number of linearly independent column-vectors of A. It can be proved that for any matrix A the row-rank and the column-rank of A are equal. This common number is called the rank of A and we shall denote it by rank(A). It is clear that:

 $rank(A) \leq min\{m,n\}$

System of simultaneous linear equations:

When there are m linear equations in n variables they are written as:

 $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$ $\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$ $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m$

Here a_{ij} , $i = 1, 2 \dots m$ and $j = 1, 2, \dots n$ and b_i are given constant numbers.

And we are supposed to find, if exist, all numbers $x_1, x_2, ..., x_n$ which satisfy all the given *m*-equations simultaneously.

Matrix form of System of simultaneous linear equations:

When we have m equations in n variables, which can be written as:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ \vdots \\ \vdots \\ b_m \end{bmatrix}$$

that is same as:
$$Ax = b$$
 where $A = \begin{bmatrix} a_{ij} \end{bmatrix}$, $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{bmatrix}$ and $b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ \vdots \\ b_m \end{bmatrix}$.

Consistent system of linear equations:

When there is at least one solution for the given system of linear equations, we say that the system is consistent.

Inconsistent system of linear equations:

When there is no solution for the given system of linear equations, we say that the system is inconsistent.