

### [Frequently Asked Questions]

**Vector Spaces and Matrices** 

Subject:

**Course:** 

Paper No. & Title:

**Business Economics** 

B. A. (Hons.), 2nd Semester, Undergraduate

Paper – 202 Mathematics for Business Economics

Unit No. & Title:

Unit – 4 Linear Algebra

Lecture No. & Title:

Lecture – 1 Vector Spaces and Matrices

### **Frequently Asked Questions**

Q1.There is a zero  $0 \in \mathbb{R}^n$  with the property that for all  $x \in \mathbb{R}^n$ , x + 0 = 0 + x = x. Is this 0 different when you change *n*?

**A1.** Yes. The zero of  $\mathbb{R}^2$  is (0,0) and that of  $\mathbb{R}^3$  is (0,0,0). We are denoting by a single notation 0. Its definite meaning should be clear from the context.

# Q2.If a finite subset S of $\mathbb{R}^n$ contains the zero vector 0 of $\mathbb{R}^n$ , can it be linearly independent?

**A2.** No. We can make a non-trivial linear combination of vectors from S to be a zero vector on scalar-multiplying to zero vector by any non-zero scalar and by real number zero to all remaining vectors of S.

# Q3.Suppose T is a super set of a linearly dependent set S. That is $S \subseteq T$ . Is T linearly dependent?

**A3.**Yes. Since S is linearly dependent, a non-trivial linear combination of vectors from S is a zero vector. This non-trivial linear combination of vectors from S can be extended to a non-trivial linear combination of vectors from T by simply adding all zero scalar multiples of vectors from T-S.

## Q4.Suppose T is a subset of a linearly independent subset S. Is T linearly independent?

**A4.**Yes. Consider any linear combination of vectors from T which is equal to a zero vector. Now this linear combination can be extended to a linear combination of vectors from S by adding

zero scalar-multiples of vectors from S-T. Since S is linearly independent all scalars must be zero.

### Q5.Can we have two bases for $\mathbb{R}^n$ ?

**A5.**Yes.  $B_1 = \{e^1, e^2, ..., e^n\}$  and  $B_2 = \{2e^1, 2e^2, ..., 2e^n\}$  both are Bases for  $\mathbb{R}^n$ .

Q6.Suppose  $n \times n$  square matrix J is having all entries equal to 1. Does J have the property AJ=JA=A for all  $n \times n$ square matrices A?

**A6.**No. Clearly the first row, first column element in AJ will be the sum of all the elements of first row of A, which need not be  $a_{11}$ .

Q7.Suppose *A* and *B* are square matrices of the same type, is it true that AB = BA? A7.No. If we take  $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$  and  $B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$  then  $AB = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 5+14 & 6+16 \\ 15+28 & 18+32 \end{bmatrix}$ 

while  $BA = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 5+18 & 10+24 \\ 7+24 & 14+32 \end{bmatrix}$ .

Thus,  $AB \neq BA$ .

# Q8.How is the phrase "orthogonal matrix" related to orthogonality of vectors?

**A8.**Any two distinct row vectors are orthogonal and any two distinct column vectors are also orthogonal.

# Q9.Can vectors i.e. elements of $\mathbb{R}^n$ be regarded as matrices?

**A9.**Yes. Vectors i.e. elements of  $\mathbb{R}^n$  can be regarded either as row vectors or as column vectors depending on the situation. When they are viewed as row vectors we can treat them as  $1 \times n$  matrices. And when they are viewed as column vectors they can be treated as  $n \times 1$  matrices.

#### **Q10.If** A and B are symmetric matrices then AB = BA?

**A10.**No. Suppose  $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$  and  $B = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ . Both are symmetric matrices. But  $AB = \begin{bmatrix} 3 & 3 \\ 1 & 2 \end{bmatrix}$  and  $BA = \begin{bmatrix} 3 & 1 \\ 3 & 2 \end{bmatrix}$ , that is  $AB \neq BA$ .