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1. Introduction 

Friends, we meet here to discuss the two important concepts of 

calculus and these are continuity and differentiability. These two 

concepts rely on the concept of limit and so first we make an 

attempt to understand the concept of limit of a real valued 

function.  

 

2. Limit of a real-valued function 

Let  be a real-valued function which is defined on some open 

interval  containing a point   We say that   has  limit  as  

tends to  or    has  limit  at   and write, 

 if for every  there exists , such that 

 whenever  

Before we proceed, it is important to gather some important 

points related to the definition of limit.  

1. We may write  in the form  as  

2. Although, in the definition of limit of a function at a point  we 

have assumed that the function  be defined on an interval 

containing the point  it is not absolutely necessary to assume 

that  is defined at the point  The inequality  in 

the definition of limit clearly suggests that while evaluating 

the limit of  at the point , the value of the function  at 

 has no role to play.  

3. Limit of a function may or may not exist at a given point.  

4. If for a function  its limit exists at  then it is unique. 

Now let us try to understand the concept of limit geometrically.  



Consider the function  for which we have          

 Geometrically, this means that for any       

arbitrarily thin horizontal strip  containing the line  

we should be able to find an interval  containing the 

point  such that the graph of  for  lies 

completely in the horizontal strip  

We now consider some illustrations about evaluating the limit of 

a function at a given point. 

Example: Evaluate  

Solution: Here as the values of  get closer and closer to  the 

function  gets closer and closer to the value  Thus, we believe 

that the required limit is  To prove this, we consider an 

arbitrarily small   and determine a  , such that 

 

Choosing  we see that 

 whenever  Thus 

 

In general, it can be shown that  for every real 

number  this may tempt us to believe that limit of a function 

 at  can be derived by inserting  in  but this is not 

always true as seen in the following example. 

Example: Evaluate . 

Solution: Here notice that the limit cannot be obtained by 

inserting  in the given function because it gives us an 

undefined quantity. For evaluating the limit in this case, first we 

observe that 

 

It may now be verified that the required limit is  

Next, we consider an example where the limit does not exist. 



Example: For the function   show that its limit 

does not exist at  

Solution: If possible, suppose  then 

 

Now if  then for , there exists  

such that  whenever  But  is either 

 and both these values are at least  So we arrive at 

a contradiction. 

Sometimes when the domain of a function is an interval of the 

type  we cannot talk about the limit of this function at the 

end points of this interval. However, we may investigate about 

the one-sided limits at these endpoints which are sometimes 

useful in understanding the behavior of the function at the 

endpoints. 

 

3. The concept of One-sided limits 

Let  be a function defined on an interval just to the right of  

We say that   has   as a limit from right or right limit  at  

 and write,  if for every  there exists  

such that  whenever  

Similarly, if  is defined on an interval just to the left of  then 

we say that   has left limit  at   and write, 

 if for every  there exists  such that 

 whenever  

We saw that the function  does not have limit at 

But it can be easily verified that 

 and . 

4. Basic properties of Limits 



Suppose  and  Then 

1.  

2.  

3.  provided that  

Note that the first two properties also hold if we have any finite 

number of functions instead of two. These properties are very 

useful in the evaluation of limits of certain functions and 

sometimes in proving general results like the following theorem.  

Theorem: If  is a polynomial function then  for 

every real number  Further, for any rational function , if 

 then  . 

We saw that for polynomial functions and rational functions, the 

limit at a given point of their domain  is simply the value of the 

respective function at that point. There are many more functions 

for which this holds and this leads us to the definition of 

continuous functions. 

5. Continuity of a function at a point 

Let  be a real-valued function defined on some subset   of 

We say that   is continuous at  the point  if the domain 

set  contains an open interval containing the point  and 

further   If  is continuous at each and every point 

of the domain set  then we say that  is continuous on  

If a function  fails to be continuous at a point  then we say 

that  is discontinuous at  

From the definition of continuity of a function at a point, we infer 

that for a function  to be continuous at , three things should 

happen. 

1. The function  should be defined at  



2. The function  should have limit at  

3. The limit of the function  at  should be equal to the value of 

the function  at  

Since these three things happen for polynomial functions 

everywhere, all polynomial functions are examples of continuous 

functions on . 

6. The concept of right and left continuity 

A function   is continuous at   from right or left, if 

 or  respectively. 

Remark: Obviously,  is continuous at  if and only if it is 

continuous from right as well as left. 

Example: Prove that  is continuous on  

Solution: Let  be an arbitrary real number. In order to show 

that the function  is continuous at  we need to show that 

 . Let  be given. Choosing  we see that 

 whenever  because of the well-known 

inequality  

. 

Sometimes it is easy to judge the continuity of a function using 

its graph. If we can draw the graph of a function  in an open 

interval without lifting the pen then such a function is continuous 

at each and every point of this interval.  

For instance if we think about the graph of    



 

Then we see that its graph can be drawn easily in any interval 

without lifting pen.  

However graphs are not always useful to decide the continuity of 

a function especially when the function oscillates a lot. We take 

two illustrations to understand this. 

First illustration  

Let  

 

 

If we look at the graph of this function then we realise that as  

approaches the origin the oscillations of  get faster and 

faster.  

As a result the function  takes every single value between  

and in the interval , no matter how small is the  Hence; 

this function fails to be continuous at the origin. 

Second illustration 



Let  

Note that this function oscillates so fast that it is difficult to plot 

its graph even in a tiniest interval. For investigating continuity of 

such functions we cannot rely on their graphs but have to follow 

the definition. Using the definition of continuity, here it is not 

difficult to establish that the given function is continuous only at 

the origin. 

We now record some important results regarding continuous 

functions. 

Theorem: If functions  and  are continuous at , then  

 And  are continuous at . Further if  then the 

quotient function  is continuous at  

It may be deduced from this theorem that a rational function  

is continuous everywhere except the points which are zeroes or 

roots of the polynomial  

Having established that polynomial and rational functions are 

continuous we finally record a result about the continuity of 

exponential and logarithmic functions.  

Theorem:  

1. If  is any positive number then the exponential function  is 

continuous on . 

2. If  is any positive number different from  then the 

logarithmic function  is continuous on  

7. The concept of Derivative 

Derivative is one of the most important tools in calculus. Its 

applications are not just in the field of mathematics or science 

but far beyond because it is associated with the study of change 

in one variable with respect to the other.  The idea of derivative 

comes from the problem of determining the slope of a curve at a 



given point on the curve and determining the instantaneous rate 

of change of a variable  with respect to another variable  when 

the variable  is a function of   

We now give the formal definition of derivative. 

Definition: Derivative 

Let  be a real-valued function defined on some subset   of 

We say that   is differentiable at the point  if the 

domain set  contains an open interval containing the point  

and the limit 

 exists. We call this limit the derivative of  at 

the point  and we denote it by the symbol  The process of 

finding the derivative is called differentiation. Some of the other 

common notations for the derivative   of  at  are 

                                or  or  . 

If  is differentiable at each and every point of the domain set 

 then we say that  is differentiable on  and  represents a 

function on  Note that the concept of one-sided limits can be 

used to define right and left derivatives also. 

In economics,  the concept of derivative can be used to derive 

the marginal revenue function from a demand function or a total 

revenue function because it is defined as the rate of change in 

the total revenue due to an arbitrarily small change in the 

quantity of units sold. 

The simplest example of a differentiable function is constant 

function whose derivative is  everywhere and the identity 

function whose derivative is equal to  everywhere. We now 

take one example to illustrate the method of computing the 

derivative by its definition. 



Example: Show that the function  is differentiable on   

and  

Solution: Here  

 

We have shown here that the derivative of  is  geometrically, 

it means that the slope of the tangent to the curve  at 

any point  is  In particular, at origin, this slope is  and 

hence the tangent to  at  is the X-axis as can be seen 

in the picture. 

                                    

Differentiability is stronger than continuity 

It is a very simple task to show that if a function  is 

differentiable at a point   then it is also continuous at . But the 

converse of this does not hold in general. For instance, we have 

seen that the function  is continuous everywhere but this 

function is not differentiable at  because the limit of the 

quotient  as  does not exist. 

8. Rules of differentiation 

Let us now consider some rules of differentiation which are 

helpful in evaluating the derivatives. 

Constant Rule 

If  for all  then  for all  

Scalar multiplication rule 



If  is differentiable at , and  is a real number then the 

function  is differentiable at  and  

Sum, difference, product and quotient rule for 

differentiation 

If the functions   and  are differentiable at  then 

the functions ,  and  are differentiable at  and 

 where as  

Further if then the quotient function  is differentiable 

at  and  

Power rule for differentiation 

Let  where  is any positive real number. If  then  

is differentiable for all  and . If  then  is defined 

for all non-zero  and  for all  

The power and some other rules of differentiation discussed so 

far can be used collectively to prove that the polynomial and the 

rational functions are differentiable wherever they are defined 

and further, their derivatives can be easily computed using these 

rules. 

Derivatives of exponential functions 

If  is any positive number then the exponential function  is 

differentiable for all  and . In particular , that 

is, derivative of the function  is the function itself. 

Chain rule for differentiation 

For functions  and , suppose  is a well-defined composition 

function on the domain of  If  is differentiable at  and  is 

differentiable at  then the composite function  is 

differentiable at  and  

The chain rule is very useful to simplify the calculations on 

numerous occasions. For instance, if we have to find the 



derivative of  then we can find this by expanding it and 

differentiating the expansion term by term. But this will be a 

very time consuming process. On the hand if we define 

 and  then  and by the chain 

rule 

 

Inverse function derivative rule 

Let  be an invertible function defined on an open interval 

containing the point   and If  is differentiable at 

 and if is non-zero, then  is differentiable at  

and 

 

Since  is the inverse function of  and  using the 

inverse function derivative rule it may be verified that  

 

 

9. Summary 

We discuss the concept of limit in detail and see how it leads to 

the definition of continuity and continuous functions. We learn 

certain examples of continuous and discontinuous functions and 

get familiarize with certain properties of continuous functions. 

The final part is dedicated to the detailed introduction of 

derivatives which are very useful objects in the field of science 

as well as economics. We learn certain examples of 

differentiable functions and discuss some of the rules of 

differentiation. These rules are very useful while investigating 

the differentiability or while computing the derivatives of certain 

functions. 



 


