

[Glossary]

Limit, Continuity & Differentiability of a real valued function of a real variable

Subject:

Business Economics

Course:

Paper No. & Title:

B. A. (Hons.), 2ndSemester, Undergraduate

Paper – 202 Mathematics for Business Economics

Unit No. & Title:

Unit – 2 Functions

Lecture No. & Title:

Lecture – 2 Limit, Continuity & Differentiability of a real valued function of a real variable

Glossary

Linear functions

A linear function is a function of the form y = f(x) = mx + c.

Polynomial functions

A real valued polynomial function is a function of the form $y = p(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$ where a_i 's are real constants and nis a positive integer or zero.

Roots or zeroes of polynomials

For the polynomial y = p(x), if there exists a real number c such that y = p(c) = 0, then we say c is a root or zero of the polynomial p(x).

Rational functions

A real valued rational function is a function of the form $y = R(x) = \frac{p(x)}{q(x)}$ Where p(x) and q(x) are real valued polynomials in x. the domain of the rational function R(x) is the set of all x where $q(x) \neq 0$.

Exponential function

An exponential function is a function of the form $y = f(x) = b^x$ defined for all $x \in \mathbb{R}$ and where *b* is some positive number different from 1.

Logarithmic function

As the exponential function $y = f(x) = b^x$ is a one-one function from \mathbb{R} onto the set of positive reals, its inverse is a function from the set of positive reals onto \mathbb{R} . This function is called the logarithmic or in short log function with base *b*. The notation used for this function is $f^{-1}(y) = \log_b y$. Thus if y is any positive number then $f^{-1}(y) = \log_b y = x$ means that $b^x = y$.

Natural Logarithmic function

A natural logarithmic function is a logarithmic function with base as the number *e*.

Interval

An interval is a non-empty set of real numbers say I, such that if $x, y \in I$ and x < z < y, then $z \in I$.

Open Interval

An interval *I* is called an open interval if for every $x \in I$, there exist points $r, s \in I$ such that r < x < s.

Bounded and unbounded closed Interval

A bounded closed interval is a set of the type $\{x \in \mathbb{R}: a \le x \le b\}$ where *a* and *b* are real numbers. An unbounded closed interval is a set of the type $\{x \in \mathbb{R}: a \le x\}$ or $\{x \in \mathbb{R}: x \le b\}$

Limit of a real-valued function

Let f(t) be a real-valued function which is defined on some open interval *I* containing a point *x*. We say that f(t) has limit *l* as *t* tends to *x* or f(t) has limit *l* at t = x, and write, $\lim_{t \to x} f(t) = l$, If for every $\epsilon > 0$ there exists $\delta > 0$, such that $|f(t) - l| < \epsilon$, whenever $t \in I$ and $0 < |t - x| < \delta$.

Infinite valued limits

Let f(t) be a real-valued function which is defined in some open interval I containing a point x. we say that $t \to x^{-1} f(t) = \infty$, if for every M > 0 there exists $\delta > 0$, such that f(t) > M, whenever $t \in I$ and $0 < |t - x| < \delta$. On the other hand if for every M > 0 there exists $\delta > 0$, such that f(t) < -M, whenever $t \in I$ and $0 < |t - x| < \delta$ then we say that $\lim_{t \to \infty} f(t) = -\infty$.

Limits at infinity

Let f(t) be a real-valued function which is defined in some open interval of the form (a, ∞) and let $l \in \mathbb{R}$. Then we say that

```
\lim_{t \to \infty} f(t) = l,
```

if for every $\epsilon > 0$ there exists M > 0 such that $|f(t) - l| < \epsilon$, whenever $t \in (a, \infty)$ and t > M. Similarly if f(t) is defined in some open interval of the form $(-\infty, b)$ then we say that $\lim_{t \to -\infty} f(t) = l$, if for every $\epsilon > 0$ there exists M > 0 such that $|f(t) - l| < \epsilon$, whenever $t \in (-\infty, b)$ and t < -M.

Continuity of a real-valued function at a point

Let f(t) be a real-valued function defined on some subset D of \mathbb{R} . We say that f(t) is continuous at the point $x \in D$ if the domain set D contains an open interval containing the point x, and further

 $\lim_{t\to x}f(t)=f(x).$

Differentiability of a real-valued function at a point

Let f(t) be a real-valued function defined on some subset D of \mathbb{R} . We say that f(t) is differentiable at the point $c \in D$ if the

domain set D contains an open interval containing the point c, and the limit

 $\lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$ Exists.