ASSIGNMENT

- 1. If for a function f(t), its limit exists at t = x, then prove that it is unique.
- 2. Let $(t) = \begin{cases} -1, t < 0 \\ 1, t \ge 0 \end{cases}$. Show that $\lim_{t \to 0^+} f(t) = 1$ and $\lim_{t \to 0^-} f(t) = -1$.
- 3. Suppose $\lim_{t\to x} f(t) = l_1$ and $\lim_{t\to x} g(t) = l_2$. Then prove that $\lim_{t\to x} \{f(t) \pm g(t)\} = l_1 \pm l_2$.
- 4. Prove that if p(t) is a polynomial function then $\lim_{t \to a} p(t) = p(a)$ for every real number a.
- 5. Prove that a function f is continuous at x if and only if it is continuous from right as well as left.
- 6. If the functions f(t), g(t) and h(t) are differentiable at t = c obtain the value of (fgh)'(c) in terms of f'(c), g'(c) and h'(c).
- 7. Compute the derivative of $\frac{t-1}{t^2+1}$ using the quotient rule for differentiation.