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1. Introduction 

Friends, we are well familiar with the idea of summing finitely 

many numbers or quantities but today we are going to learn the 

concept of infinite sums which is needed quite often in 

mathematics. The idea of infinite sums is related to the concept of 

convergent and divergent sequences and so we shall begin with 

the formal definition of sequence and its limit. 

 

2. Sequence 

An infinite sequence of real numbers is a function  with domain 

as set of natural numbers   and codomain as set of real 

numbers .  

Although by definition, sequence is a function on the set , 

usually it is written as    or as  

 

Where  is the value of this function at the point , i.e.,  

. Thus intuitively, a sequence is simply a list of numbers. 

Our major interest here is whether a given sequence of numbers   

 approaches a fixed number as  approaches infinity. Let us 

make this point more precise by defining the limit of a sequence. 

 

3. Limit of a sequence 

Let  be a sequence of real numbers and  be any real 

number. We say that the sequence  has limit  or it 

converges to  and we write, 

or  as  

If for every  there exists a positive integer  such that 

for all  



From the definition, we understand that a sequence  has 

limit  if  is sufficiently close to  for all  sufficiently large. Also 

it is a very simple task to show that if the limit of a sequence 

exists, then it is unique. If a sequence has the limit then it is 

called a convergent sequence otherwise it is termed as a 

divergent sequence. Note that the simplest example of a 

convergent sequence is a constant sequence, i.e.,  for all . It 

is obvious that whether a given sequence is convergent or 

divergent depends purely on the behavior of  for large values of 

 and so the first thousand or the first billion terms of the 

sequence are irrelevant when we are discussing issues related to 

the convergence or divergence  of the sequences. 

Properties of Limit 

Let  and  be convergent sequences. Then 

1.  

2.   

3.  provided  

4.   

We now discuss few theorems which are helpful in understanding 

the concept of convergent sequences. For this we require some 

definitions. 

Definition: Bounded sequence 

A sequence of real numbers is said to be bounded if there 

exists a real number  such that  

 

Definition: Increasing/decreasing sequences 

Let   be a sequence of real numbers. Then it is said to be 

increasing if  for all  On the other hand if  for 

all  then the sequence is said to be decreasing. 



A sequence which is either increasing or decreasing is also called 

a monotonic sequence. 

Theorem: Every convergent sequence is bounded. 

Theorem: Every monotonic bounded sequence is convergent. 

Theorem: If  as  then for every  there exists a 

positive integer  such that for all  

Let us now take a simple example. 

Example: Find the limit of the sequence  

 

Solution: Let  clearly this sequence  is decreasing and 

bounded and so it is convergent. We see that as  gets larger and 

larger  gets closer and closer to . Hence, we expect the limit of 

this sequence to be . To prove this, given a positive number  we 

want to show that there exists a positive integer  such that  

 For all  

But it is easy to see here that if we choose  to be any positive 

integer greater than , then our requirement is fulfilled and so 

we have 

 

About divergent sequences 

Consider the sequences  and  

It is clear that none of these two sequences approach any finite 

number or limit no matter how far we go down the sequence, and 

so these two sequences are divergent sequences. 

Although,  and  both are divergent sequences, 

there is a difference in the way they diverge. Note that the 

sequence  does not converge to a finite number because its 

terms are approaching (positive) infinity as  tends to infinity 



whereas the sequence  does not converge because its terms 

are bouncing around indefinitely and so cannot settle to a specific 

value. Such divergent sequences are also known as oscillatory 

sequences.   

Sequences with limit as  or   

We have given a precise meaning of the notation 

 

When  is a finite number but sometimes it is equally important to 

understand the meaning of  

Or   

 

Definition:  

For a sequence if for every  there exists a positive 

integer   such that 

 

Then we say that  tends to (positive) infinity and write, 

 

On the other hand if for every  there exists a positive integer  

 such that 

 

Then we say that  tends to (negative) infinity and write, 

 

Note that if  is a sequence of non-zero numbers which tends 

to positive or negative infinity, then  

 

We now record some useful results. 

Theorem: Let  be any real number and  

1)   

2) If  then   



3) If  then   

4)  

5)  

6)  

Since we are often encountered with finding the limit of quotient of 

polynomials   , we take an example to understand it. 

Example: Determine . 

Solution:  Note that 

 

Using the properties of limit, it follows that the required limit is  

 

The technique used in this example can be used to derive a general 

result about the limit of a quotient of any two polynomials. 

Theorem: If  and  are polynomials with leading coefficients 

as  and   respectively then 

a)  if  and  are of same degree 

b)  if degree of  exceeds that of  

c)   if degree of  exceeds that of  

In mathematics as well as economics the sequence  has a 

distinguished importance and hence we need to know its behavior 

as  tends to infinity. Since this sequence is increasing and 

bounded, it is convergent and its limit is defined to be the number 



 It is an irrational number whose approximate value is 2.71828. 

In  mathematics there are many equivalent definitions of  but 

here we would like to see an economic interpretation of this 

number  Note that  is the year-end  amount  to the 

principal amount of 1 unit, if it is assumed to grow at 100% per 

annum and if the interest is compounded  times in a year at 

regular intervals. With this interpretation,  is simply the year-end 

amount to the principal amount of 1 unit, if it is assumed to grow 

at 100% per annum and if the interest is compounded 

continuously? 

In economics, we often deal with exponential, logarithmic and 

polynomial functions and on certain occasions it is important to 

compare the growth of these functions with each other. The 

following result highlights this matter. 

 

Theorem: Let  be any positive number. Then 

1)  

2)  where  is a polynomial in  

3)  where  is a polynomial in  

It can be inferred from these three results that the growth of the 

exponential function is much faster as compared to the growth of 

logarithmic or polynomial functions. Further, the growth of the 

polynomial function is faster than that of logarithmic function. 

 

4. Series of numbers 

Given a sequence  of real numbers, we associate with it the 

infinite sum or series denoted by  Our goal here is to 



assign a precise meaning to the symbol  Intuitively, we 

understand that  means the value of the finite sum  

for larger and larger values of  and this intuition leads to the 

following idea of convergence of series. 

About Convergent and Divergent series 

Given a sequence consider the finite sums of the type 

, for  Then we say that the series 

converges  to a number  and write  if the 

sequence  converges to  as  If this does not happen 

then we say that the series  is divergent and  the symbol  

has no meaning. However, if  is positive or negative 

infinity, then we say that the series diverges to infinity and 

write  or  respectively. 

The sequence  is often called the sequence of partial sums of 

the series   We have earlier made a point that the 

convergence or divergence of any sequence is not affected by the 

first million or the first billion terms of the sequence; so this 

applies to the sequence  and consequently the convergence or 

divergence of any series is not affected by the first million or first 

billion terms of the series. 

Notice that if the series  converges to a number  then 

. 

Thus for the series , if then we can 

immediately conclude that the series is not convergent. On the 

other hand if  then the series may not be necessarily 

convergent. For this, we may consider the example of the 

harmonic series  it can be worked out that if 

then  and so the sequence  turns out to 

be unbounded. This results into  being divergent and hence 



the series  is not convergent. In fact, we have  

this can also be interpreted as; given any positive number  we 

can find a positive integer  such that  

 

5. Basic properties of the series 

1)  If the series   and the series   are convergent 

then the series  is convergent and 

 

2)  If the series  converges and , then the series  

 converges and 

 

 

6. Geometric series 

Let  be a real number. Then the series    is 

called the geometric series.  The test for the convergence of 

geometric series is very simple. If  then it is convergent and 

further  whereas if  then it is divergent. 

Such type of series occurs when we think about the decimal 

expansions of some rational numbers. For instance, if we consider 

the number  its decimal expansion is  which may be 

written as 

 

 

 

7. Telescoping series 



A telescoping series is a series whose partial sums eventually have 

fixed number of terms after cancellation. One popular example of 

such a series is  

 

Here we may write 

 

It is very easy to determine the convergence of the series which 

are geometric or telescoping but this is not always the case for  

Arbitrary series. So we now introduce some of the tests which help 

us in determining the convergence or divergence of a given series. 

 

8. Comparison test 

1)  If  for , and if  converges, then  converges. 

2)  If  for , and if  diverges then  diverges. 

The comparison test is very useful especially if we are familiar with 

certain convergent or divergent series of non-negative numbers. 

 

9. Cauchy’s Condensation test  

Let  be a decreasing sequence of non-negative terms. Then the 

series  converges if and only if the series  converges.  

In view of the geometric series test, the Cauchy’s condensation 

test now immediately gives some nice results. 

Results 

1) The series  converges if  and diverges if  

2) The series  converges if  and diverges if  



Using these results we now work out an example based on the 

comparison test. 

Example:  Determine the convergence or divergence of the series 

  and  . 

Solution:  Let      and    since  for all 

 and because we know that     is a convergent series, it 

follows from the comparison test that the series    

converges.   For the second series we take     and 

 Note that  for large values of  and further the 

harmonic series  is divergent. So the comparison test implies 

that the series  diverges. 

 

10. The Alternating series test 

Let  be a decreasing sequence of non-negative terms. Then 

the series  converges if  

Recall that  is divergent for  follows from the Cauchy 

condensation test. But if we alternate the sign of the terms of this 

series then due to the alternating series test we deduce that 

 is convergent for any  this result indicates that 

sometimes the convergence of a series is greatly influenced by 

the cancellations involved in the series. 

The comparison test suggests that a series converges if the rate 

of convergence of its terms to zero is high enough. But it is not 

always possible to judge this rate of convergence and in such 

scenarios, sometimes the ratio and the root tests are useful. So 

we discuss these tests one by one. 

The Ratio test 

For the series , suppose that  then 



1)  converges if  

2)  diverges if  

3) the test is inconclusive if  

The ratio test can be applied to conclude that the series  

converges for every real  Further; it can also be used to establish 

that the series    converges.  

The ratio test is mainly used when the general term of the series 

involve factorials. Some of the series where this test is 

inconclusive are  and   . 

The Root test 

For the series , suppose that  Then 

1)  converges if  

2)  diverges if  

3) the test is inconclusive if  

 

Here we are assessing the value of the  root and so the root 

test is mainly used when the general term of the series has 

powers. The following rules for non-exponentials are also 

sometimes useful while applying the root test. 

1)  for every positive constant  

2)  

3)  for every positive exponent  

4) . 

Example: Test the convergence or divergence of the series 

 and   . 

Solution: Let  Then 



 

Hence by the root test the series    is 

convergent. For the second series we observe that 

 

 

And hence the series  is divergent. 

 

11. Summary 

We give a formal definition of a sequence and its limit and 

understand the concepts related to the convergence and 

divergence of sequences. Later, we use the concept of a limit of a 

sequence to define the infinite sums or series. The problem of 

determining whether a given series is convergent or divergent is 

not always easy and for this various tests are introduced and 

studied in this module. 

 


