FAQs

 An RC beam 300mm wide and 700mm deep overall, is reinforced with 3 Nos. of 20mm dia bars. The centres of bars are 50mm from the underside of the beam. The maximum stresses are not to exceed 7 N/mm² for concrete and 190 N/mm² for steel. Find the moment of resistance and the safely distributed load, the beam can carry. The span is 6m.

Solution:

Given			
1	b	=	300mm
]	D	=	700mm
Effective cover		=	50mm
	d	=	700 – 50 = 650mm
	A _{st}	=	942mm ²
	$\sigma_{ m cbc}$	=	7 N/mm ²
	σ_{st}	=	190 N/mm ²
]	Mr	=	?

<u>To find x_c</u>

σ_{cbc} /	σ _{st} /	$m = x_c / d - x_c$
Xc	=	214.08mm

<u>To find x</u>

bx.x/2 = mAst(d-x) x = 195.115mm here x < x_c; it is under reinforced section

<u>To find M_r</u>

M r =	$M_r = T X z = A_{st}\sigma_{st} (d-x/3)$		
Mr	=	104.7 kNm	
$M_r = M = wl^2/8 = 104.7 \text{ kNm}$			
W	=	23.27 kN/m	
self wt. of beam	=	0.3 x 0.7 x 25 = 5.25 kN/m	
Net wt. on beam	=	23.27 – 5.25 = 18.02 kN/m	

2. An RC beam 250 x 500mm overall in section, is reinforced with four 22mm dia bars at the bottom with a cover of 40mm from the centre of reinforcement. The effective span is 5m. Find the concentrated load the beam can support at the support at the centre. Take σ_{cbc} =5 N/mm² σ_{st} =190 N/mm².

Solution:

Given		
b	=	250mm
D	=	500mm
Effective cover	=	40mm
d	=	500 – 40 = 460mm
A _{st}	=	1520mm ²
$\sigma_{ m cbc}$	=	5 N/mm ²
σ_{st}	=	190 N/mm ²
Mr	=	?

<u>To find x_c</u>

σ_{cbc} /	$\sigma_{\rm st}/2$	$m = x_c / d - x_c$
Xc	=	156.44mm

<u>To find x</u>

 $bx.x/2 = mA_{st}(d-x)$ x = 230mm here x > x_c; it is over reinforced section

<u>To find M_r</u>

$M_r = C X z = bx \sigma_{cbc}/2 (d-x/3)$				
	M_{r}	=	58.05 kNm	
Self wt. of bea	am w _s	=	$0.25 \ge 0.5 \ge 25 = 3.125 \le N/m$	
$M_s = w_s l^2 / 8 = 9.765 \text{ kNm}$				
Net Moment	М	=	58.05 – 9.765 = 48.285 kNm	
	М	=	48.285 = wl/4	
Net load on b	eam w	=	38.628 kN.	

3. The cross section of a rectangular beam has to resist a bending moment of 75 kNm. If the beam is 250mm wide and the permissible stresses in concrete and steel are 5 N/mm² and 190 N/mm² respectively, find the effective depth and tensile reinforcement required.

Solution:

Given

M_{r}	=	75 kNm
b	=	250mm
σ_{cbc}	=	5 N/mm ²
σ_{st}	=	190 N/mm ²
d	=	?
A_{st}	=	?

Assuming a balanced section

<u>To find x_c</u>

 $\sigma_{cbc} / \sigma_{st} / m = x_c / d - x_c$ $x_c = 0.329d$ z = (d - x/3) = 0.89d

<u>To find d</u>

.

$M_r = C X z = bx \sigma_{cbc}/2 (d-x/3)$					
M_{r}	=	183.86d ²	=	75 kNm	
d	=	639.22mm	=	640mm	

<u>To find A_{st}</u>

$$M_r = T X z = A_{st}\sigma_{st} (d-x/3)$$
$$A_{st} = 693 \text{ mm}^2$$