<u>FAQs</u>

 Design a RCC circular cover slab of 7.5m clear diameter supported on 230mm thick beams which can provide complete fixity of the slab. The slab is used to support a parking load of 7.5 kN/m². Consider floor finish of 1.0 kN/m². Use M20 mix and Fe415 grade steel.

Diameter of slab = 7.5m clear and 7.73m effective

a. Load calculations:

<u>i. Dead loads</u>

	Assume thickne	ab from	l _x /d	=	20;		
				d	=	l _x /20	
					=	386.5	mm
				D	=	386.5	+ 15 + 10/2
					=	406.5	mm
	Assume D	=	300m	ım;	d	=	280mm
	Self-weight of slab		=	0.30	x 25	=	7.50 kN/m ²
	Weight of floor	finish	=			=	1.00 kN/m ²
	Total dead loads			Wd	=	8.50 k N/m ²	
	ii. <u>Live load</u> on slab				wı	=	7.50 kN/m ²
	<u>iii. Total load</u> on	ı slab			w	=	16.00 kN/m ²
b.	<u>Effective span</u>	$l_{\rm x}$	=	7.5 +	0.23	=	7.73m
			=	7.5 +	0.28	=	7.78m whichever is less
	Hence	l_x	=	7.73n	n		

- c. Bending moment calculations
 - Circumferential moment at the centre of slab $(M_{\theta})_{c} = + 1/16 \text{ wa}^{2} = 14.94 \text{ kNm}$
 - Circumferential moment at the edge of slab $(M_{\theta})_e = 0$
 - Radial moment at the centre of slab $(M_r)_c = + 1/16 \text{ wa}^2 = 14.94 \text{ kNm}$
 - Radial moment at edge $(M_r)_e = -2/16 \text{ wa}^2 = 29.88 \text{ kNm}$
- d. Effective depth of slab

Consider 1m width of the slab and by equating M_{umax} to M_{ulim}

Hence safe against flexure.

Keep D = 300mm; d = 280mm

e. Area of reinforcement

a. Main Steel for radial and circumferential moment at centre

	Mu	=	$(M_{\theta})_{c} =$	(M _r) _c	$= 0.87 f_y A_{st} (d-0.416 x_u)$				
	Ast, reg	=	228.97r	nm²					
	i. Che	eck for	Minimum steel as per IS 456:2000						
	A _{st}	=	0.12% cross sectional area						
		=	336 mm	1 ² > 228	8.97 mm ²				
	Hence A _{st}	eg	= 3	336mm	12				
Provide 8mm diameter bar									
Spacing		=	149.60 mm						
Provide 8mm diameter bar at 125mm c/c									
A _{st pro}		=	402.12mm ²						
b.	b. Main Steel for radial moment at edge at top								
	Mu	=	$(M_r)_e$	= 0.87 1	fyAst(d-0.416xu)				
	A _{st, reg} =		459.16mm ²						
	i. Check for Minimum steel as per IS 456:2000								
	A _{st}	=	0.12% c	cross se	ectional area				
		=	$336 \text{ mm}^2 < 459.16 \text{mm}^2$						
	Hence A _{st}	eg	= 4	459.161	mm ²				

Provide 10mm diameter bar

Spacing = 171.05mm

Provide 10mm diameter bar at 150mm c/c as radial reinforcement at the edge at top for a length of $[7.96/2 - 3.98/\sqrt{3}] = 1.75m$ from the face of support. Provide 8mm diameter bar at 175mm c/c (minimum) as circumferential reinforcement at the edge. The circumferential reinforcement is a anchorage reinforcement which are used to avoid slippage of radial reinforcement at the edge at top.

Check for deflection

As per cl.23.2.1 of IS 456:2000

Hence d = 183.33mm < 280mm; Hence safe against deflection.