<u>FAQs</u>

 Design a reinforced concrete slab for a room of size 4m x 5m clear subjected to a live load of 2.5 kN/m². Three edges discontinuous (one long edge continuous). The load due to floor finish is 1 kN/m² and partition is 2 kN/m². Use M20 and Fe415 as materials.

Three edges discontinuous (one long edge continuous)

	U			-	-			-	
Size of slab =			4.23n	4.23m x 5.23m effective					
The ratio $l_y/l_x =$		=	5.23/4.23		=	1.24 < 2; it is two way slab.			
a.	. Load calculations:								
	<u>i. Dead loads</u>								
	Assume thickness of slab from cl. 23.2.1 of IS 456:2000								
					l/d	=	20;		
					d	=	211.5	0mm	
					D	=	231.5	mm	
	Assume	D	=	150m	m				
	Self-weig	ht of sl	ab	=	0.150	x 25	=	3.75 kN/m ²	
	Weight o	f floor f	finish	=			=	1.00 kN/m ²	
	Partition	S		=			=	2.00 kN/m ²	
	Total dea	d loads	5			Wd	=	6.75 kN/m ²	
	ii. <u>Live load</u> on a			<u>ıd</u> on sl	а	Wl	=	2.5 kN/m ²	
	<u>iii. Total load</u> on slab					W	=	9.25 kN/m ²	
b.	<u>Effective span</u>								
	l _{eff}	=	4.00 +	0.13	=	4.13n	1		
		= c/c	distanc	e betw	een sup	ports	= 4.23	3m whichever is less.	
	Hence l_{eff}	=	4.13n	ı					
C.	Bending moment calculations: one long edge discontinuous						<u>itinuous</u>		
	M_{x}	=	$\alpha_x w l$	_x 2					
	M_{x}	=	$\alpha_{y} \mathbf{w}$ l	x ²					
	From Table 26 of IS 456: 2000; bending moment coefficients are							efficients are	
	$l_y/l_x = 5.23/4.23 = 1.24;$								
	<u>Short span coefficients</u>								
	-ve BM at continuous edge				α_{x}	= 0.0'	73		
	+ve BM @ mid span				α_{x}	= 0.0	548		
	<u>Long span coefficients</u>								
	-ve BM at continuous edge			α_y	=	-			

+ve BM @) mid sp	α_y	= 0.043	
Max $M_X =$	0.073 x	9.25 x 4.13 ²	=	11.52 kNm
Max M _Y =	0.043 x	9.25 x 4.13 ²	=	6.78 kNm
M_{ux}	=	1.5 x 11.52	=	17.28 kNm
M_{uy}	=	1.5 x 6.78	=	10.17 kNm

d. Effective depth of slab

Consider 1m width of the slab and by equating M_{umax} to M_{ulim}

 $0.138 f_{ck} bd^2 =$ $M_{ulim} =$ M_{umax} = 79.13mm < 130mm d Hence safe against flexure d Keep D 130mm = 150mm; = e. Area of reinforcement (along Shorter direction) Main Steel: Mux $0.87 f_y A_{st} (d-0.416 x_u)$ = 393.25 mm² A_{st, reg} = Check for Minimum steel as per IS 456:2000 0.12% cross sectional area = Ast = 216 mm² < 393.25 mm² 393.25 mm² Hence A_{st reg} = Provide 8mm diameter bar = 127.82mm Spacing Provide 8mm diameter bar at 110mm c/c 456.96mm² = A_{st pro} f. Area of reinforcement (along Longer direction) Main Steel: Muy $0.87 f_y A_{st} (d-0.416 x_u)$ = 224.72 mm² A_{st, reg} = Check for Minimum steel as per IS 456:2000 A_{st} = 0.12% cross sectional area 216 mm² < 224.72 mm² = 224.72 mm² Hence A_{st reg} = Provide 8mm diameter bar 223.68mm Spacing = Provide 8mm diameter bar at 200mm c/c

g. <u>Check for deflection</u>

As per cl.23.2.1 of IS 456:2000

l/d	=	20 x M.F
p_t	=	0.35%
$\mathbf{f}_{\mathbf{s}}$	=	207.14 N/mm ²
M.F	=	1.6
d	=	129.06mm < 130mm

Hence safe against deflection