<u>FAQs</u>

1. Analyse and design the reinforcement required for a two way slab simply supported on all the four sides when the corners of the slabs are prevented from lifting. The clear dimension of the room is $4m \times 4m$ with one long edge discontinuous. It is supported on 230mm thick wall. Live load on slab is 3 kN/m^2 . Consider other dead loads also. Use M20 and Fe415 as materials.

One long edge discontinuous

Size of slab =			4.23m x 4.23m effective							
Th	The ratio $l_y/l_x =$		=	4.23/4.23		=	1 < 2;	it is two way slab.		
a.	Load calc	ulation	<u>s:</u>							
	<u>i. Dead loads</u>									
	Assume thickness of slab from cl. 23.2.1 of IS 456:2000									
					l/d	=	20;			
					d	=	211.50	Omm		
					D	=	231.5	mm		
	Assume	D	=	150m	m					
	Self-weig	ht of sla	ab	=	0.150	x 25	=	3.75 kN/m ²		
	Weight of	f floor f	ìnish	=			=	0.60 kN/m ²		
	Partitions	5		=			=	1.96 kN/m ²		
	Total dea	d loads	5			Wd	=	6.31 kN/m ²		
	ii.]	Live loa	<u>d</u> on sla	a	wı	=	3.0 kN/m ²		
	<u>iii. Total l</u>	w	=	9.31 k	xN/m ²					
b.	Effective span									
	\mathbf{l}_{eff}	=	4.00 +	0.13	=	4.13m				
		= c/c	distanc	e betwe	een sup	ports=	4.23 w	vhichever is less.		
	Hence l_{eff}	=	4.13m	l						
c.	Bending moment calculations: one long edge discontinuous									
	$M_{\rm x}$	=	$\alpha_x w l$	x ²						
	$M_{\rm x}$	=	$\alpha_y \mathbf{w} \mathbf{l}$	x ²						
	From Table 26 of IS 456: 2000; bending moment coefficients are									
	$l_y/l_x = 4.23/4.23 = 1.0;$									
	Short span coefficients									
	-ve BM at	lge	$\alpha_{\rm x}$	= 0.03	37					
	+ve BM @		$\alpha_{\rm x}$	= 0.02	8					
	Long span coefficients									

-ve BM at continu	α_y	= 0.037	
+ve BM @ mid sp	an	α_{y}	= 0.028
Max $M_X = 0.037 x$	9.31 x 4.13 ²	=	5.88 kNm
Max $M_{\rm Y} = 0.037 \ {\rm x}$	9.31 x 4.13 ²	=	5.88 kNm
$M_{ux} = M_{uy} =$	1.5 x 5.88	=	8.82 kNm

d. Effective depth of slab

Consider 1m width of the slab and by equating Mumax to Mulim

 $0.138 f_{ck} bd^2 =$ M_{ulim} = M_{umax} d = 56.53mm < 130mm Hence safe against flexure d Keep D = 150mm; 130mm = e. Area of reinforcement (along both directions) Main Steel: $M_{ux} = M_{uy} =$ 0.87fyAst(d-0.416xu) 193.17 mm² = A_{st, reg} Check for Minimum steel as per IS 456:2000 = 0.12% cross sectional area Ast = 156 mm² < 193.17 mm² 193.17 mm² Hence A_{st reg} = Provide 8mm diameter bar Spacing = 260.21mm Provide 8mm diameter bar at 230mm c/c 218.55mm² = A_{st pro}

f. <u>Check for deflection</u>

As per cl.23.2.1 of IS 456:2000

l/d	=	20 x M.F
pt	=	0.17%
fs	=	212.75 N/mm ²
M.F	=	2.0
d	=	103.25mm < 130mm
Uana	o cofo	against deflection

Hence safe against deflection.