<u>FAQs</u>

1. Design a reinforced concrete slab for a room of size 4m x 5m supported on 230mm thick walls, which do not have any adequate provision to resist torsion at corners, and subjected to a live load of 2.5 kN/m². The load due to floor finish is 1 kN/m² and partition is 2 kN/m². Use M20 and Fe415 as materials.

Size of slab 4.23m x 5.23m effective = The ratio l_v/l_x = 5.23/4.23 = 1.24 < 2; it is two way slab. a. Load calculations: i. Dead loads Assume thickness of slab from cl. 23.2.1 of IS 456:2000 l/d = 20; d 211.50mm = D = 231.5mm Assume D 200mm = Self-weight of slab 0.200 x 25 5.0 kN/m² = = Weight of floor finish 1.0 kN/m^2 = = Partitions 2.0 kN/m^2 = = Total dead loads 8.0 kN/m^2 Wd = ii. Live load on sla = 2.5 kN/m^2 Wı iii. Total load on slab 10.5 kN/m^2 = w **b.** Bending moment calculations $\alpha_x w l_x^2$ $M_{\rm x}$ = M_x = $\alpha_v w l_x^2$ From Table 27 of IS 456: 2000; bending moment coefficients are $l_v/l_x = 5.23/4.23 = 1.24;$ $\alpha_x = 0.088; \alpha_y = 0.0585$ $M_X = 0.088 \times 10.5 \times 4.23^2$ = 16.53 kNm $M_{\rm Y} = 0.0585 \ {\rm x} \ 10.5 \ {\rm x} \ 4.23^2$ 10.99 kNm = M_{ux} $= 1.5 \times 16.53$ = 24.80 kNm $= 1.5 \times 10.99$ 16.485 kNm M_{uv} = c. Effective depth of slab Consider 1m width of the slab and by equating M_{umax} to M_{ulim} $0.138 f_{ck} bd^2$ M_{ulim} = = Mumax d = 94.79mm < 180mm Hence safe against flexure Keep D 200mm; = d = 180mm

d. <u>Area of reinforcement (along Shorter direction)</u>

Main Steel:

	M _{ux}	=	$0.87 f_y A_{st} (d-0.416 x_u)$		
	$A_{st, reg}$	=	400 mm ²		
	Check for	Minim	um steel as per IS 456:2000		
	A _{st}	=	0.12% cross sectional area		
		=	$216 \text{ mm}^2 < 400 \text{ mm}^2$		
	Hence $A_{st reg}$		= 400 mm ²		
	Provide 10mm diam		eter bar		
	Spacing	=	196.35mm		
	Provide 8mm diameter bar at 175mm c/c				
	A _{st pro}	=	448.80mm ²		
e.	e. Area of reinforcement (along Longer direction)				
	Main Steel:				
	M_{uy}	=	$0.87 f_y A_{st} (d-0.416 x_u)$		
	A _{st, reg}	=	262.17 mm ²		
	Check for	Check for Minimum steel as per IS 456:2000			
	A _{st} =		0.12% cross sectional area		
		=	216 mm ² < 262.17 mm ²		
	Hence A _{st}	reg	= 262.17 mm ²		
	Provide 8mm	Provide 8mm diameter bar			
	Spacing = 191.73mm		191.73mm		
	Provide 8mm diameter bar at 175mm c/c				
Torsion Steel:					
A_{st} = $\frac{3}{4}$ of Main steel A_{st} =		3⁄4 of M	1ain steel A _{st} = ¾ x 400 = 300 mm ²		
	Use 8mm dia bars;				
	Spacing	=	166mm		
	Provide 8mm dia bars at 150mm c/c at each corners both top as v bottom in two layers at a distance of $1/5$ from the face of support.				

f. <u>Check for deflection</u>

As per cl.23.2.1 of IS 456:2000

l/d	=	20 x M.F
p_t	=	0.25%
\mathbf{f}_{s}	=	214.53 N/mm ²