	Span Moments		Support Moments	
Type of load	Near the middle of end span	At middle of interior span	At support next to the end support	At other interior supports
Dead load and imposed load (fixed)	+1/12	+1/16	- 1/10	- 1/12
Imposed load (not fixed)	+1/10	+1/12	- 1/9	- 1/9
For obtaining B effective span	M, the coefficient	t shall be multip	lied by the total o	lesign load and

1. Give the moment coefficients for bending moment calculations as per IS 456:2000

2. Design a three span one way continuous roof slab for a residential building of effective span 3m. It carries a live load of 1.5 kN/m^2 and weathering course and tile of 1.0 kN/m^2 . Adopt M20 concrete & Fe415 steel. Draw the reinforcement details also.

a. Load calculations:

i. Dead loads:

Assuming thickness of slab from Cl. 23.2.1

-	l/d	=	26						
	d	=	3000/26	=	115.40				
	D	=	, 115.40 + 15 + 8/2	=	134.38mm				
Assume	D	=	, 125mm						
Self weight o	of slab	=	0.125 x 25	=	3.125 kN/m ²				
Weight of we	1.0 kN/m ²								
Total dead loads			Wd	=	4.125 kN/m ²				
ii. Live load on slab			Wl	=	3.0 kN/m ²				
b. Moment calculations:									
<u>i. Span moments</u>									
Moment nea	5.79 kNm								
Moment at t	4.57 kNm								
<u>ii. Support moments</u>									
Moment at s	- 6.71 kNm								
Moment at o	- 6.09 kNm								
<u>c. Effective depth of slab:</u>									

here maximum BM M_d 6.71 kNm = 1.5 x 6.71 10.065 kNm Mu = = by equating M_u to $M_{u,lim}$, d = 60.39mm < 106mm Hence safe against moment. Hence keep D = 125mm; d = 106mm d. Area of reinforcement - Main Steel Ast for Maximum bending moment Mu = $0.87 f_y A_{st} (d-0.416 x_u)$ 0.87f_vA_{st} / 0.36f_{ck}b where x_u = 0.05 Ast = 278.13 mm² Now $A_{st reg} =$ Check for Minimum steel as per IS 456:2000 A_{st} = 0.12% cross sectional area 127.2 mm² < 278.13mm² = 278.13 mm² Hence A_{st reg} = Provide 8mm diameter bar 180.73mm Spacing = Provide 8mm diameter bar at 160mm c/c = 314.16mm² A_{st pro} **Distribution Steel** 0.15% cross sectional area Ast = = 159 mm^2 Use 6mm dia ms bar Spacing = 177.83mm Provide 6mm dia MS bar at 150mm c/c e. Check for deflection As per cl.23.2.1 of IS 456:2000 l/d 26 x M.F = 0.30% = pt fs = $0.58 \text{ f}_{y} \text{ A}_{st reg} / \text{ A}_{st pro} =$ 213.09 N/mm² As per Fig.4 of IS 456: 2000; M.F = 1.6 Hence d = 72.12mm < 106mm

Hence safe against deflection.