1. Define the term: Continuous slab.

The slab supported over more than two supports is called as continuous slab.

2. Write the IS codal provisions for using moment coefficients given in IS 456:2000 for the design of continuous slab.

Unless more exact estimates are made, for slabs of uniform cross-section which support substantially uniformly distributed loads over three or more spans which do not differ by more than 15 percent of the longest, the bending moments and shear forces used in design may be obtained using the coefficients given Table 12 of IS 456:2000. For moments at supports where two unequal spans meet or in case where the spans are not equally loaded, the average of the two values for the negative moment at the support may be taken for design.

3. Give the moment coefficients for bending moment calculations as per IS 456:2000

	Span Mo	oments	Support Moments				
Type of load	Near the middle of end span	At middle of interior span	At support next to the end support	At other interior supports			
Dead load and imposed load (fixed)	+1/12	+1/16	- 1/10	- 1/12			
Imposed load (not fixed)	+1/10	+1/12	- 1/9	- 1/9			
For obtaining BM, the coefficient shall be multiplied by the total design load and effective span							

4. Design a five span one way continuous floor slab over an effective span of 3.0m required for an institutional building. It carries a live load of 3 kN/m² and consider other dead loads also. Adopt M20 concrete & Fe415 steel. Draw the section of slab showing reinforcement details also.

a. Load calculations:

i. Dead loads:

Assuming thickness of slab from Cl. 23.2.1

	l/d	=	26		
	d	=	3000/26	=	115.40
	D	=	115.40 + 15 + 8/2	=	134.38mm
Assume	D	=	125mm		
Self weight	of slab	=	0.125 x 25	=	3.125 kN/m ²
Weight of flo	oor finish	=	0.025 x 24	=	0.60 kN/m ²
Weight of partitions (as per IS875)				=	1.96 kN/m ²

Total dead loads			Wd		=	5.685 kN/m ²	
ii. Live load on slab			$\mathbf{w}_{\mathbf{l}}$		=	3.0 kN/m ²	
<u>b. Moment calculati</u>	ons:						
<u>i. Span moments</u>							
Moment near the m	iddle of	fend sp	$an = w_d l^2 / 12$	+ $w_l l^2 / 1$	0 =	6.96 kNm	
Moment at the middle of interior span = $w_d l^2/10 + w_l l^2/12$ =						5.45 kNm	
<u>ii. Support moments</u>							
Moment at support	next to	end su	pport = -w _d l ² /	$10 - w_l$	² /9 =	- 8.12 kNm	
Moment at other int	terior s	upport	$s = -w_d l^2 / 12 - v_d l^2$	wıl ² /9	=	- 7.26 kNm	
<u>c. Effective depth of</u>	slab:						
here maximum BM	M_{d}	=	8.12 kNm				
	M_{u}	=	1.5 x 8.12	=	10.80	kNm	
by equating M_u to M	l _{u,lim} ,						
	d	=	66.43mm < 1	L06mm			
Hence safe against moment.							
Hence keep D = 125	mm; d	= 106n	ım				
d. Area of reinforcer	ment – I	Main St	<u>ceel</u>				
<u>A_{st} for Maximum be</u>	<u>nding n</u>	noment	t				
M _u =	$M_u = 0.87 f_y A_{st} (d-0.416 x_u)$						
where $x_u = 0.87 f_y A_{st} / 0.36 f_{ck} b$							
=	0.05 A _{st}						
Now $A_{st reg} =$	340.6	7 mm ²	2				
Check for Minimum	steel as	s per IS	456:2000				
A _{st}	=	0.12%	6 cross section	al area			
	=	127.2	mm ² < 340.67	7mm ²			
Hence $A_{st reg}$	=	340.6	7mm ²				
Provide 8mm diameter bar							
Spacing	=	147.5	5mm				
Provide 8mm diameter bar at 125mm c/c							
A _{st pro}	=	402.1	2mm ²				
Distribution Steel							
A _{st}	=	0.15%	6 cross section	al area			
	=	159 n	nm²				
	J	1					

Use 6mm dia ms bar

Spacing = 177.83mm Provide 6mm dia MS bar at 150mm c/c

e. Check for deflection

As per cl.23.2.1 of IS 456:2000

l/d = 26 x M.F $p_t = 0.40\%$

 $f_s = 0.58 f_y A_{st reg} / A_{st pro} = 340.67 N/mm^2$

As per Fig.4 of IS 456: 2000;

M.F = 1.6

Hence d = 72.12mm < 106mm

Hence safe against deflection.