1. Design a simply supported floor slab for a room 8m x 3.5m clear in size supported on 230mm thick wall, if the superimposed load is 3 kN/m². Consider other dead loads also. Use M20 and Fe415 as materials. Draw the section of slab showing reinforcement details also.

Size of slab =			=	8m x 3.5m clear								
	=		8.23n	8.23m x 3.73m effective								
The ratio $l_y/l_x =$			8.23/	3.73	=	2.21 > 2 it is one way slab.						
a.	Load calc	ulatio	<u>ns:</u>									
	<u>i. Dead loads</u>											
	Assume t	ab from	l _x /d	=	20;							
					d	=	l _x /20					
						=	186.5	0mm				
					D	=	186.5	+ 15 + 8/2				
						=	205.5	mm				
	Assume	150m	m									
	Self-weig	ht of s	lab	=	0.15 x	25	=	3.75 kN/m ²				
	Weight of	floor	finish	=	0.025	x 24	=	0.60 kN/m ²				
	Weight of partitions (as			s per IS	per IS875)			1.96 kN/m ²				
	Total dead loads					Wd	=	6.31 k N/m^2				
	ii. <u>Live loa</u>			<u>ad</u> on sl	ab	WI	=	3.00 kN/m ²				
	<u>iii. Total l</u>	oad o	n slab			w	=	9.31 kN/m ²				
b.	<u>Effective</u>	<u>span</u>	$\mathbf{l}_{\mathbf{x}}$	=	3.5 +	0.23	=	3.73m				
				=	3.5 +	0.15	=	3.65m whichever is less				
	Hence	2	$\mathbf{l}_{\mathbf{x}}$	=	3.65n	1						
C.	<u>Bending r</u>	nome	nt calcu	<u>lations</u>								
	M_{u}	9.31 x 3	.65²/8		=	23.26 kNm						
d.	<u>Effective</u>	<u>depth</u>	of slab									
	Consider 1m width of the slab and by equating M_{u} to M_{ulim}											
	M_{ulim}	=	0.138	f _{ck} bd ²	=	M_{u}						
	d	=	91.80	mm								
	D = 91.80 -) + 15 +	8/2	=	110.8	110.80mm < 150mm				
	Hence safe against flexure.											
	Keep D	=	150n	ım;	d	=	131m	m				
e.	Area of re	infor	<u>cement</u>									

a. <u>Main Steel:</u>

	Mu	=	0.87	f _y A _{st} (d-o	.416x	(u)					
	A _{st, r}	reg =	553.	60mm ²							
	b. Cheo	ck for Mini	num steel as per IS 456:2000								
	A_{st}	=	0.12	0.12% cross sectional area							
		=	157.	2 mm ² <	553.60	0mm ²					
	Hen	ce A _{st reg}	=	553.60	0mm ²						
	Provide 10mm diameter bar										
	Spacing	=	141.	141.87mm							
	Provide	8mm diam	mm diameter bar at 125mm c/c								
	A_{stpro}	=	$= 628.32 \text{ mm}^2$								
	c. Dist	ribution St	eel								
	A _{st}	=	0.12	% cross s	sectior	nal area					
		=	157.	2 mm ²							
	Use	6mm dia M	IS bar								
	Spac	cing =	176r	nm							
	Provide 6mm dia MS bar at 150mm c/c										
f.	<u>Check for deflection</u>										
	As per cl.23.2.1 of IS 456:2000										
	l/d =	= 20 x	M.F								
	p _t =	= 0.46	%								
	f _s =	= 0.58	$f_y A_{st reg}$	g / A _{st pro}	=	213.77 N/m	1m ²				

Hence d = 123.33mm < 131mm; Hence safe against deflection.

As per Fig.4; M.F = 1.5