<u>FAQs</u>

1. Determine the reinforcement required for a T-beam to resist a M_u of 360kNm with the following data. Width of flange = 1500mm; Depth of flange = 100mm; Width of rib = 300mm; Effective depth = 500mm; Materials = M20 and Fe415.

To compute D_f/d and b_f/b_w

D _f /d	=	0.20
b _f /b _w	=	5.0

To compute Ψ_w

Calculated ψ_w	$= M_u / f_{ck} b_w d^2$	
	=	0.24

To obtain $\underline{\psi}_w$ from Table flexure 7.6 of Roorkee's Design Handbook for the values of

D _f /d		=	0.20
b_f/b_w		=	5.0
Obtained	ψ_{w}	=	0.334

<u>To compare Calculated ψ_w with Obtained ψ_w </u>

Here Calculated ψ_w < Obtained ψ_w

It confirms neutral axis lies within the flange.

Design as rectangular section of size b_f x d

<u>To compute ψ</u>

Ψ	=	$\psi_w x b_f \textit{/} b_w$
	=	0.048

<u>To compute **k**</u>

k =		$\Psi x f_{ck}$	
	=	0.96	

<u>To obtain p_t</u>

Obtain p_t from Table 2.1 B for the corresponding value of k = 0.96

 $p_t = 0.282$

<u>To find A_{st}</u>

$A_{st} \\$	=	p _t b _f d / 100
	=	2115 mm ²

2. Determine the reinforcement required for a T-beam to resist a M_u of 600kNm with the following data. Width of flange = 1500mm; Depth of flange = 100mm; Width of rib = 300mm; Effective depth = 500mm; Materials = M20 and Fe415.

To compute D_f/d and b_f/b_w

	D _f /d	=	0.20
	b _f /b _w	=	5.0
<u>To compute ψ_w</u>			
Calcula	ated ψ_w	=	M_u / $f_{ck}b_w d^2$
		=	0.4

<u>To obtain ψ_w </u> from Table flexure 7.6 of Roorkee's Design Handbook for the values of

D _f /d	D _f /d		0.20
b _f /b _w		=	5.0
Obtained	ψ_{w}	=	0.334

To compare Calculated ψ_w with Obtained ψ_w

Here Calculated ψ_w > Obtained ψ_w

it confirms neutral axis lies outside the flange.

Design as flanged section

<u>Obtain ψ_w </u> for $\xi = \xi_{\text{lim}} = 0.479$ from the Table flexure 6.4

 $\psi_{\rm w}$ = 0.464

Here Calculated ψ_w < Obtained ψ_w for $\xi = \xi_{lim} = 0.479$

It is designed as singly reinforced flanged section

<u>Obtain ω_w for $\psi_w = 0.4$ </u>

 $\omega_{\rm w}$ = 0.511

<u>To compute A_{st}</u>

$$A_{st} = \omega_w x b_w d f_{ck} / f_y$$
$$= 3694 \text{ mm}^2$$