<u>FAQs</u>

1. An RC beam 300mm x 500mm effective, is reinforced with $804mm^2$ and $1520mm^2$ of steel at the top and bottom respectively. Find the M_U the beam using M20 and Fe415 as materials. d' = 33mm.

To find x_{u,lim}

$\mathbf{x}_{u,lim} =$	0.479d		
x _{u,lim} =	239.50mm		
<u>To find strain at d¹ from top</u>			
Strain at d^1 from top =	$0.0035 (x_{u,lim} - d^1) / x_{u,lim}$		
=	0.00302		
<u>To find stress f_{sc} at d¹ from top</u>			

f_{sc} =

<u>To find stress f_{cc} at d¹ from top</u>

 f_{cc} = 0.446 f_{ck} = 8.92 N/mm²

To find M_u

 $M_U = 0.36 f_{ck} x_{u,lim} b (d-0.416 x_{u,lim}) + A_{sc} (f_{sc} - f_{cc}) (d-d')$ $M_U = 181.14 \text{ kNm}.$

354.08 N/mm²

 An RC beam 200mm x 300mm effective, is constructed with M20 and Fe415 as materials. d' = 30mm. Find the steel required, of the factored moment on beam is 74kNm.

=========

<u>To find M_{u,lim}</u>

 $M_{u,lim} = 0.138 f_{ck} b d^2$ $M_{u,lim} = 49.68 kNm$

Here $M_u > M_{u,lim}$; hence it is doubly reinforced section.

<u>To find A_{st1} required for a balanced section</u>

 $A_{st1} = 0.36f_{ck}b x_{ulim} / 0.87f_y$ $A_{st1} = 573.31 \text{ mm}^2$

To find M_{u1}

M_{u1}	=	M_u - M_{ulim}
	=	24.32 kNm

<u>To find A_{st2}</u>

M _{u1}	=	0.87fyAst2(d-d')
A _{st2}	=	249.975 mm ²

To find total A_{st}

Ast	=	822.61 n	1m ²
ISL		022.01 11	1111

To find strain at d¹ from top

Strain at d^1 from top =	0.0035 ($x_{u,lim}$ – d ¹) / $x_{u,lim}$	
=	0.002769	

To find stress f_{sc} at d¹ from top

fsc	=	353 N	$/mm^2$
			/

To find stress f_{cc} at d^1 from top

fcc	=	0.446 f _{ck}
	=	8.92 N/mm ²

To find Asc

 $M_{u1} = A_{sc} (f_{sc} - f_{cc}) (d-d')$ $A_{sc} = 261.78 \text{ mm}^2$