FAQs

1. A beam 360mm x 500mm effective size carries a factored moment of 175 kNm. If concrete M20 and steel Fe500 are used, find the area of steel required.

<u>To find M_{u,lim}</u>

 $M_{u,lim} = 0.133 f_{ck} b d^2$ $M_{u,lim} = 199.50 kNm$

Here $M_u < M_{u,lim}$; hence it is under reinforced section.

<u>To find A_{st}</u>

M_u	=	0.87fyAst(d-0.416xu)
Xu	=	0.87f _y A _{st} / 0.36f _{ck} b
	=	0.20 A _{st}
A _{st}	=	958.32 mm ²
	Mu xu A st	$M_u = x_u = z_u$ $= A_{st} = z_u$

2. A beam 230mm x 650mm effective size carries a factored moment of 195 kNm. Find the area of steel required, if concrete M20 and steel Fe415 are used.

======

To find M_{u,lim}

$M_{u,lim}$	=	$0.138 f_{ck} bd^2$
M _{u,lim}	=	268.203 kNm

Here $M_u < M_{u,lim}$; hence it is under reinforced section.

To find Ast

	M_u	=	$0.87 f_y A_{st} (d-0.416 x_u)$
Where	Xu	=	0.87f _y A _{st} / 0.36f _{ck} b
		=	0.218 Ast
Now	A _{st}	=	960.05 mm ²