FAQs

1. Write the expression to find the total compressive force offered by the concrete

$$C_u = 0.36 f_{ck} x_u b$$

2. Write the expression to find the total tensile force offered by the steel

$$T_u = 0.87 f_y A_{st}$$

3. Give the distance of C.G total compressive force from top of compressive stress block

$$Y = 0.416 X_U$$

4. Ultimate moment of resistance (M_u) of singly reinforced rectangular section

$$M_u = T_u \times z$$

= 0.87f_yA_{st}(d-0.416x_u)
 $M_u = C_u \times z$
= 0.36f_{ck}x_ub(d-0.416x_u)

5. Give the limiting values of ultimate moment of resistance

Steel Type	f _y (N/mm ²)	X ulim	$\mathbf{M}_{ ext{u,lim}}$
Mild Steel	250	0.531d	$0.149 f_{ck} bd^2$
Fe415	415	0.479d	$0.138 f_{ck} bd^2$
Fe500	500	0.456d	$0.133f_{ck}bd^2$

6. Find the M_u of the rectangular beam of size 300mm x 650mm effective which is reinforced with $942mm^2$ of steel at tension side. Use M20 concrete and Fe415 steel.

To find x_u

$$x_u = 0.87 f_y A_{st} / 0.36 f_{ck} b$$

$$x_u = 157.46mm$$

To find x_{u,lim}

$$x_{u,lim} = 0.479d$$

$$x_{u,lim} = 311.35mm$$

here $x_u < x_{u,lim}$; it is under reinforced section

To find M_u

$$M_u = 0.87 f_y A_{st} (d-0.416 x_u)$$

$$M_{\rm H} = 198.72 \, \text{kNm}$$

7. Find the M_u of the rectangular beam of size 225mm x 700mm effective which is reinforced with 1100mm^2 of steel at tension side. Use M20 concrete and Fe500 steel.

 $\underline{\text{To find } x_u}$

 $x_u = 0.87 f_y A_{st} / 0.36 f_{ck} b$

 $x_u = 295.37mm$

 $\underline{\text{To find } x_{u,lim}}$

 $x_{u,lim} = 0.479d$

 $x_{u,lim} = 319.20$ mm

here $x_u < x_{u,lim}$; it is under reinforced section

 $\underline{\text{To find } M_u}$

 $M_u = 0.87 f_y A_{st} (d-0.416 x_u)$

 $M_u = 276.15 \text{ kNm}$