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Theory of Long Columns: 

We have already derived the effective length of columns or the critical 

load carried by the columns for three end conditions. We have four end 

conditions which are both ends hinged, both two end fixed, one end 

fixed and the other end free and then one end hinged and the other 

end fixed. We have arrived the critical load for three cases. Then we 

will see how to find the Euler‟s crippling load or Euler‟s buckling load 

for the other end condition which is one end fixed and other end 

hinged.  

So one end is hinged here and the other end is fixed here. In case of 

hinged end we will be having horizontal reactions also in addition to 

the vertical reactions. So that the horizontal reaction is H as shown in 

the diagram and we will have the load P as applied here. So the 

column will be deflecting in this fashion. The deflection will be zero at 

the fixed end as well at the hinged end and the slope at the fixed end 

will be zero. But we will be having slope at hinged end and we will be 

calculating the bending moment at any section xx. So let the deflection 

at this point be y and the bending moment at xx will be equal to the H 

multiplied by the distance say (l-x). We have considered x from the 



base and the remaining distance will be (l-x) so the moment produced 

by H with respect to x will be )( xlH   and the nature will be 

clockwise. Whereas the actual load P produces an anticlockwise 

moment about this point. The value equal to yP . Therefore bending 

moment due to critical load P will be yP and moment due to 

horizontal crust will be )( xlH  . Therefore, 
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The things which we need to remember or we need to understand 

clearly is again considering or finding bending moment at the section 

or given point. Once we are conversion with finding the bending 

moment then we can very easily forms the differential equation. So 

the bending moment concepts which we studied in unit 1 and 

subsequently we applied the bending stress computation as well in the 

deflection calculation and here again we need the concept of bending 

moment. As such the concept of bending moment is very essential for 

the analysis as well in the design structures which we will be studying 

subsequently. So one has to be through in the concept of moment, the 

moment developed is )( xlH   and yP .    
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The general solution for this differential solution will be equal to  
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Now we have several boundary conditions and to substitute the 

boundary conditions find the value of A and B, then we will be having 

the equation for critical load of the column with one end fixed and the 

other end hinged. So when x=0 and y=0 i.e., at fixed point we have 

deflection equal to zero. So substituting that we get, 
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Then we substitute the other condition at the fixed end the slope is 

also zero. That is slope in the sense dy/dx. So before substituting in 

the boundary condition we should have the value of dy/dx. We have 

the value of y so dy/dx can be evaluated by differentiating it.  
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Then we substitute the other boundary condition that the column is 

fixed here and it is hinged here. So at the hinged end again the 

deflection will be zero. So we can very well make use of that boundary 

condition that is when x=l and y=0.   
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On simplifying the above equation we will be getting,  
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Should be in radians 

So this is possible when 5.4
EI

P
l . That is when  tan  the 

condition is possible and we have taken   radian. So when we put the 

4.5 for the above equation then we will get the concept of, 
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On squaring on both side we will get the value, 
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Hence we wish to have this crippling load in the form of  
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So the crippling load or the buckling load in case of column with one 

end fixed and other end hinged is 
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Then we can write the basic formula of Euler‟s crippling load as, 
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Where „c‟ depends on different end conditions so C =1 for columns 

with both ends hinged. C=4 for column with one end fixed and other 

end free. C=1/4 in the cases that both ends fixed and in one end fixed 

and other end hinged. So we can remember in this manner also for the 

crippling load for different end condition.   

The another way for arriving at the crippling load easily is we can 

remember the effective length of the column for different end 

conditions. In general formula it is 
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remember this formula and the leH takes the value of L when both the 

ends are hinged and leH is equal to 2L when one end fixed and other 

end free and when both the ends are fixed then leH takes the value of 

l/2 and then leH takes the value of 
2

l
if one end fixed and other end 

hinged. We can remember the crippling formula in this manner also.  

So the general formula is,  
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On substituting the values of leff we will get, for both ends are hinged 
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So these are the things one need to remember in case of long 

columns. In long column the formula depends on the different end 

conditions.   

Examples Problem for Euler’s Column Theory: 

So we need to derive the crippling load for different end condition. We 

should be in a position to derive the formula as well we should be in a 

position to apply the formula in numerical examples.   

Example 1: 

A steel rod 5m long and 40mm diameter is used a column with one 

end fixed and other end free. Determine the crippling load by Euler‟s 

formula. Take E=200Gpa. 

Solution: 

Here we have a steel rod of 5m long and 40mm diameter. It is used as 

a column with one end fixed and the other end free. So we need to 

clearly notice the end condition of the column before solving the 

problem. We need to determine the crippling load by Euler‟s formula.  

Here the young‟s modulus is given as 200Gpa.   

We know that the Euler‟s crippling load is given by, 
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Let us substitute the terms individually, the young‟s modulus is given 

as 200Gpa so it is equal to, 
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29 /10200 mN  

25 /102 mmN  

For one end fixed and other end free the l effective will be equal to 
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So we have E value and I value. Hence we have the length also so 

substituting all this in the general equation, in case of circle the length 

is 5m long and the diameter of the rod is 40mm. Using the moment of 

inertia formula we get the I value as,  
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So it is very easy to arrive at the Euler‟s crippling load if we are 

familiar with the different end conditions and if we are conversion in 

finding or computing the moment of inertia.  

2

2

2

2

4)2( l

EI

l

EI
P


  

NP 7.2476
)5000(4

125600102
2

52








 

kN48.2  

Then here we have another one problem of hollow section. 



Example 2: 

A hallow alloy tube 4m long with external and internal diameters of 

40mm and 25mm respectively was found to extend by 4.8mm under a 

tensile load of 60kN. Find the buckling load for the tube with both ends 

pinned. Also, find the safe load on the tube taking a factor of safety of 

5.  

Solution: 

There is a hollow column with the external diameter 40mm and the 

internal diameter is 25mm and it found to extend by 4.8mm under a 

tensile load of 60kN. We need to find the buckling load for the tube 

with both ends pinned. Here pinned means hinged and we are also 

asked to find the safe load on the tube taking a factor of safety of 5.   

The general formula is 
2
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 . Here L effective can be calculated 

based on the given end conditions.  Here both ends are hinged so in 

this case the effective length is equal to given length itself.   
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Then we need to calculate the value of I and young‟s modulus.  

Sometimes young‟s modulus will be given directly or will be given as 

extend value like this. Here we found the extend value of 4.8mm 

under the tensile load of 60kN. We very well know how to calculate 

young‟s modulus when we have the load and the displacement or the 

extension. The young‟s modulus will be, 
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The area for the hollow circular section it will be given by, 
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l  will be the extension and it is given as 4.8mm thereby we can 

calculate the value of E. So young‟s modulus is know and the „I‟ value 

can be computed. Then L effective is equal to the given length itself in 

case of both the ends are hinged. On substituting this we will get the 

values, 
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In this problem we are asked to calculate the safe load. So sometimes 

we will be having direct load or working load or the safe load. The safe 

load will be given by the crippling load which we calculated using the 

Euler‟s crippling load formula divided by the factor of safety. So factor 

of safety is given in the problem as 5. 
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We need a safe load the column can carry or the rod can carried with 

the column.  

Example 3: 

Compare the ratio of the strength of a solid steel column to that of 

hollow column of the same cross sectional area. The internal diameter 

of the hollow column is ¾ of the external diameter. Both the column 

have same length and are pinned at both ends.   

Load carrying capacity of solid column 
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Solution: 

This will be the problem of calculating the ratio of strength of the solid 

steel column so that of the hollow column of a same cross section 

area.  This will be the problem of interest that we will be in a position 

to find whether a hollow section will be enough or a solid section is 

enough to carry the load. Thereby we can go for safety section of the 

material of the column. So we need to compare the ration of the 

strength of the solid steel column so that of the hollow column of a 

section the area. 

The internal diameter of the hollow column is ¾ of the external 

diameter. Both the columns are same length and same end i.e., both 



are pinned at the both ends. So load carrying capacity of hollow 

column is given by, 

2

2

eff

H
H

l

EI
P


    

Then the ratio, we are interested in finding the ratio of the solid 

column to the hollow section. So it will be given by, 
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When we find the ratio of the moment of inertia of the solid section to 

hollow section that will indicate the ratio of the strength of the two 

columns. So it will be given as, 
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Where D is the diameter of the solid column and in case of solid 

section IH will be equal to, 
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Where D0 stands for outer diameter of hollow column and Di stands for 

inner diameter of hollow column so the inner diameter is given as 

three fourth the outer diameter. 
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It is nothing but 0.75 of the outer diameter. So this ratio will normally 

be given in the problem. So what will be the internal diameter in terms 

of the outer diameter that will be given as, 
























 4

0

4

684.0
6464

D
D

I

I

H

S 
 

)1(
684.0 4

0

4


D

D
 

It is also given that both has the same cross-sectional area. So area of 

solid is equal to area of hollow section.  
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Where D0 is the outer diameter and Di is the inner diameter of the 

hollow section. 
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On squaring both side we get, 
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So substituting this in equation (1) we get,  
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This is the thing which we have arrived at the solid column and the 

hollow columns. So this type of comparison will also be given and 

sometimes we will be asked to find the percentage saving in material 

by using the hollow column. Because from this problem we understand 

that the hollow column is able to take 3.57 times the strength of the 

solid column. So in that case the hollow column will be economical 

thereby we go for saving the material and we also given sections such 

as compound sections like this. Say you are given a rectangular, 

circular or hollow circular section. Similarly we will also be given 

composite sections like this.   

Example 4: 

An „I‟ section 400mm x 200mm x 20mm and 6m long is used as a 

strut with both ends fixed. Determine Euler‟s crippling load. Take 

E=200 Gpa.  

Solution: 

Here the load calculation by Euler‟s formula is given by, 
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We will calculate each and every term. So young‟s modulus is give as 

200 Gpa.  

GpaE 200  

29 /10200 mN  

25 /102 mmN  

We need to calculate the moment of inertia should be calculated for 

both yyxx II & . Because we have studied the both the case that is 

bending moment about x axis and y axis and then we need to decide 

which should be used for the load calculations. If you take Iyy it can be 

computed easily because the axis yy passes through the c.g of all the 

elements. The „I‟ section comprises top flange, bottom flange and the 

width. Hence self moment of yy axis will be useful in computing the 

moment of inertia with respect to yy. So it is given by, 
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In case of Ixx we have already constructed the bending moment for the 

xx section, 
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Where we have B is equal to 200mm, D is equal to 400mm and the 

values of b and d will be, 
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Once the xxI will be computed using this relation. Then we need to 

calculate minI so in this case the minimum of moment of inertia is, 
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We have both ends fixed hence the effective length will be equal to,  
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So it is better to express the exponential in the same so that we can 

compare the values of yyxx II & .   

2

2

effl

EI
P


  

2

852

3000

10269.0102 



 



NP 61089.5   

kN5890  

Rankine’s Formula: 

We need to study about rankien‟s formula for calculating the crippling 

load.   

Rankien‟s Formula: 
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C  is crushing stress of the column material 

A  is the cross sectional area of the column 

a is the Rankien‟s constant 
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effl is effective or equivalent length of the column 

In case of Euler‟s formula we should remember the value of young‟s 

modulus. Sometimes young‟s modulus will be given or sometimes it 

need to be calculated from given tension and then comes moment of 

inertia computation. So in moment of inertia computation we need to 

be familiar with moment of inertia of circular section, hollow circular 

section, “I” section etc and sometimes we should calculate the least 

moment of inertia and then L effective depends on the end condition 

so we should notice the end conditions of the problem. When both the 



ends are hinged then L effective is equal to L itself, when both the 

ends are fixed then L effective is equal to L/2. When one end is fixed 

and the other end is free then the L effective is equal to 2L and when 

we have one end fixed and the other end hinged then the L effective is 

equal to .2/L  So once we know all the values we need to substitute 

in the Euler‟s crippling load formula and then get the crippling or 

buckling load of the section. 


