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Example Problem for Stress at Corner of Pier: 

We have been seeing a biaxial loaded case a masonry pier supporting 

a vertical load of 80kN and acts at the eccentricity of 0.5m with 

respect to x axis and 1m with respect to yy axis. So we need to find 

the stress in the corners. So stress in corner A given by  
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So the reason for plus in the 
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is our corner A lies in the same side 

with respect to x axis as well the load is applied on the same side so it 

is plus and with respect to yy axis the corner A is to the left side of the 

axis whereas the load acts to the right side of the yy axis thereby it 

causes tensile stress and hence it is 
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When corner B is considered here we have with respect to both xx and 

yy axis. We have the corner as well the load being in a same side 



which produces compressive stress from the corner B. So plus sign for 

both the 
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In case the corner C is considered with respect to xx axis the corner C 

is on one side and the load is applied on the other side. So minus sign 

for 
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and with respect to yy axis the corner C as well the load is 

applied on the same side of yy axis and hence plus 
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Then for corner D it is with respect to xx axis the load is on one side 

and the corner is on the other side so minus. Then with respect to yy 

axis also the load is applied to the right side and the corner D lies to 

the left side and hence it is also minus.  
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So with these values we will have to calculate the stress at the 

corners. So the stress at the corners can be computed using this, so 

the P is the applied load which is 80kN and A is the area, bending 

moment value about xx axis. Hence the values are given as,  
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Hence the stress in the corners DCBA  ,,, can be computed using 

the formula which we have arrived. Then we will have to study the 

core or tern of a section.  This is more important for identifying for low 

tension case. So for low tension to develop what will be the limit of 

eccentricity that will called as the core or tern of a section. So the 

eccentricity should be limited to less than or equal to Z/A. 
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So we got this condition based on the bending stress equation
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When the direct stress is more than the bending stress then we will 

involve only compressive stress and the net resultant stress.  Whereas 

if the direct stress is less than bending stress in that case we will be 

involving tensile stress so for low tension to develop your direct stress 

should be greater or at least should be equal to M/Z and using that 

condition we will get eccentricity should be less than or equal to Z/A 

and Z is the section modulus, if you take an rectangular section Z is 

equal to I/Y where the I is equal to 
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Substituting these values we get,  
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Similarly with respect to y axis the eccentricity will be as 
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This is the diagram of core or tern how to plot. So we have y axis and 

x axis. Let us keep one sixth of the width to the right side and to the 

left side as b/6 and keep d/6 on the y axis. For low tensile to develop 

the tensile strength should be equal to d/6. So if you connect this you 

will get what is core or the tern of a section.   



Therefore the meaning of the core or a tern is if the load is 

concentrated or if the load is applied within the core or tern then there 

won’t be any tensile strength in the section. So we also called this as 

middle third rule. Middle third in the sense say this is b/6 and b/6 

therefore the width of the core will be equal to b/3. Similarly the depth 

of the core will be equal to d/3. So we divide into one third, the load 

applied within the middle third then there won’t be any tensile. So this 

middle third will be helpful in the analysis of the dam section.   

In a dam or a section say if you have rectangular or trapezoidal cross 

section and we will be having the weight of the dam W, the water 

pressure P and the upward pressure and we will having the resultant 

lying here. The resultant should be within the middle third of the base 

then there won’t be any tension developed in the dam or a section. So 

this middle third rule for a core or a tern of a section will be helpful in 

that case and also in case of columns. If you don’t want to develop any 

tension in the column then the load has to be made to act within the 

core or the tern of the section.   

Similarly that can be proved in a circle that the similar formula should 

be used as
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and hence we will get  
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So if you have d/8 on either side and if you connect by means of a 

circle then that will be a circular core or tern and that dimension will 

be d/4 being d/8 on either side if we add we get d/4, if core or tern of 

a circular sections will be d/4. 

Analysis of Long Columns: 

Analysis of long columns, So far we have studied short columns where 

the short columns are subjected to direct stress as well bending stress 

and now we will see the theory of long columns.  

A column is set to be a long column if the slenderness ratio is more 

than 12. Now we should know what is slenderness means, so 

slenderness ratio is the ratio of unsupported length or effective length 

of the column to the least lateral dimension. Say we are having the 

columns, in the column we will be having different end condition that 

has been discussing subsequently. Here the unsupported length or we 

call as effective length to least lateral dimension. Why we use the least 

lateral dimension is in case of column we can also have rectangular 

sections, circular sections and hollow sections etc. So whatever may 

be the least lateral dimensions say the width is b and depth is d.  The 

least lateral dimension is d. So the ratio of unsupported length to the 

least lateral dimension that will called the slenderness. So if that is 

less than 12 the column is set to be short column and if it is more than 

12 it is called the long column or a slender column. 



The failure pattern in terms of short column and the long column is the 

short column will be subjected to crushing stress whereas the long 

column will be subjected to buckling and the short column fail by 

crushing. So the load corresponding to the crushing stress in case of 

short column is crushing load and the compression member does not 

fail entirely by crushing but also by bending that is buckling. This 

happens in case of long columns. Short columns fail by crushing while 

long columns fail by buckling.   

Euler’s Columns Theory:  

So Euler’s has developed a theory and equation to find the buckling 

load of columns. That is in case of long column what will be the tripling 

load or buckling load of the column. So Euler’s derived the bucking 

load of long columns based on bending stress. While deriving this 

equation he had neglected the effect of direct stress. So as the direct 

stress be the predominant in case of short columns we have neglected 

this and focus on bending stress and assumptions in the Euler’s 

column are we assume that initially the column is perfectly straight 

and the load applied is truly axial. Then the cross section of the 

column is uniform throughout its length. Also the column material is 

perfectly elastic, homogeneous and isotropic and thus obeys Hooke’s 

law.   

While deriving the Euler’s column formula he has made the following 

assumptions also the length of the column is very large as compared 

to its cross sectional dimensions. This relates to the slenderness ratio 

only when the slenderness ratio is greater than 12 we call it as long 

columns. The length of the column is very large when compared to the 



cross sectional dimensions. Then the shortening of column due to 

direct compression is neglected and the failure of column occurs due to 

buckling alone.  

Now we will see the different end conditions of the columns. So we talk 

about the unsupported length or the equivalent or the effective length 

of the column. So the effective length of column depends on the end 

condition of the column. When we have both ends hinged what will be 

the unsupported length or the effective length. Similarly when we have 

both ends fixed then what will be the unsupported length and there 

may be cases that one end is fixed and the other end is hinged and 

also one end is fixed and other end free. So this are the varies end 

conditions of long columns and Euler have derived the bucking load for 

the different end conditions of the columns. We will see one by one.   

Euler’s Crippling load or buckling load: 

Euler’s crippling load or bucking load in case of both ends hinged. Say 

we have column both ends hinged and the load is applied so the 

column will buckle like this and will be subjected to bending like this 

and if I take any section section x from here then the deflected shape 

will be y. So this is the column condition in both ends of the column 

are hinged. We will arrive finally at what will be the crippling load or 

buckling load based on Euler’s column formula and for this we will use 

bending equations which we have used for arriving at the deflection of 

hinge that we very we remember that xxM
dx

yd
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. So we need to 

obtain the bending moment at xx and it will be equal to the moment 



produced by the load P multiplied by the distance y and we have put 

minus sign because it produces anticlockwise moment. 
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This is a second order differential equation involving y that is 

deflection or the column. So the general solution to this second order 

differential equation will be in the form of particular integral and 

complementary function. So if you substitute the particular integral 

and the complementary function the solution to the above differential 

equation will be, 
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Where A and B are constants of integration which has to be found 

using the boundary conditions x = 0 and y = 0.  

The column bucks like this and we take x from the bottom so at x=0 

and y=0 there is a boundary condition. So when you substitute this 

boundary condition we will get A=0 and another boundary condition is 

at x=l and y=0. At the other end that is at the hinged end also the 



deflection is zero therefore at x=l and y=0. Using this boundary 

condition we get, 
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equal to zero and B can’t be able to zero and let,  
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Taking the least significant value that is  for 
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l and squaring on 

both sides we get,  
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So the crippling load formula for columns with both ends hinged will 

be, 
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If one is interested in calculating the crippling load or buckling load we 

need to have young’s modulus of the material of the column then 

moment of inertial of inertia of the column and then the effective 

length l or unsupported length. So once these are known we can 

calculate the crippling load. Similarly the Euler’s crippling load or 

buckling load in case of column with one end fixed and the other end 

free. So imagine we have this P as deflection and the distance be a.  

And at this point the deflection will be y. So in this case P is the critical 

load, y is the deflection at any section x. Then bending moment at this 

point will be equal to,  
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So the general solution for the differential equation will be, 
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Here the addition term we involve is ‘a’ which is the deflection at the 

free end. Where A and B are constants of integration the boundary 

conditions are x=0 and y=0. So if we substitute x=0 and y=0 we get, 
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Here the other boundary condition in case of column with one end 

fixed and other end free will deflect like this. So here at the fixed end 

slope is zero. Therefore at x=0, dy/dx=0. Substituting this boundary 

condition we will get, 
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Here either B should be equal to zero or 
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P
should be equal to zero 

and since P is not zero the load cannot be zero and hence B should be 

equal to zero. Therefore we can substitute the value of A as –a, and 

B=0. The general equation for deflection will be, 
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Another boundary condition we have is x=l and y=a. Here the 

deflection will be like this and the deflection at the free end will be 

maximum at will be equal to a. So when x=l and y=a substituting that 

we get, 
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the least significant value we will be getting the equivalent length for 

column that have one end fixed and other end free. In a similar way 

we can derive the equivalent length formula for other cases namely 

columns with both ends fixed and columns with one end fixed and 

other end hinged. 

Now we will see columns with both end fixed here P is the critical load, 

and in case of fixed end we will be have moment in addition to load 

and the moment is M0 and the column will deflect like this and let the 

deflection at any section xx is equal to Y as shown in the diagram. So 

bending moment at this point will be equal to, 
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have M0 and then the bending moment at any section will be equal to 

yPM 0 . Therefore,  
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Where M0 is the fixed moment or end moment at the fixed end and 

then the general solution of the differential equation is  
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Here also we involve two constants A and B which are the constants of 

integration. The boundary condition are x=0 and y=0. Because this is 

the fixed end where both the ends are fixed we will get, 
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Similarly we have other two boundary conditions also that is when x=0 

the slope is also zero and when x=l then the slope is zero. So when 

x=0 and y=0 implies,  
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Then substituting the boundary condition when x=0, dy/dx=0 we get, 
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Since B should be equal to zero since P is not equal to zero and 

differentiating the above equation we will get, 
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Now we will substitute the other boundary condition where x=l and 

y=0. So we have already made use of two boundary conditions.  

Substituting these boundary condition we will get, 
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least significant value as 2 we get, 
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This will be the effective length of the both ends fixed. Similarly we 

can arrive the values for columns with one end free and other end 

hinged. 


