FAQ's

1. Discuss the analysis of truss by method of joints?

- Each joint in a truss is consider as a separate freebody in equilibrium

- Unknown forces are determined using equations of equilibrium namely Σv =0 and Σh =0

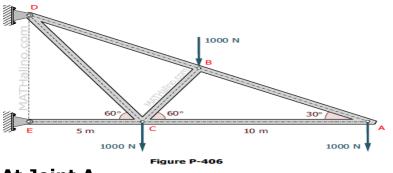
- Joints considered as free body should be such that it should not have more than 2 unknown forces

2. What is cantilever truss?

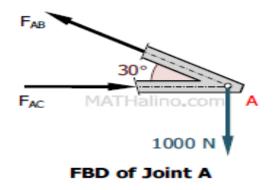
If anyone of the member of the truss is fixed and the other end is free, and the other end is free, it is called a cantilever truss. There is no reaction force at the fixed end.

3. What are the hints to be followed while analyzing a cantilever truss using method of joints?

- There is no need to find the support reactions.


- All the members are assumed to be tensile.

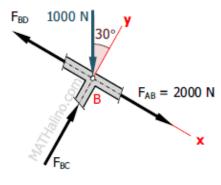
- Consider tensile forces as positive and compressive as negative.

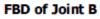

- The force convention is, upward force assigns positive sign and downward force assigns negative sign.

- The analysis is to be started from the free end where there is maximum of two unknown forces, using the condition of $\sum v = 0$ and $\sum h=0$.

4. The cantilever truss in the given Fig is hinged at D and E. Find the force in each member

At Joint A $\Sigma F V = 0 \Sigma F V = 0$




$$F AB \sin 30^{\circ} = 1000$$

 $F AB = 2000N FAB = 2000N tension$
 $\Sigma F H = 0 \Sigma F H = 0$

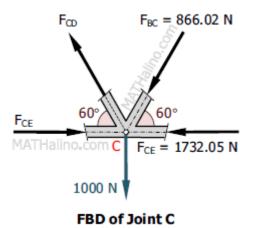
 $FAC = FAB \cos 30^{\circ}$ FAC = FAB cos³⁰°

 $FAC = 2000\cos 30^{\circ} FAC = 2000\cos 30^{\circ}$

FAC =1732.05N FAC=1732.05N compression

At Joint B

 $\Sigma F y = 0 \Sigma F y = 0$ $F BC = 1000 \cos 30^{\circ} FBC = 1000 \cos 30^{\circ}$ F BC = 866.02N FBC = 866.02N compression


 $\Sigma F x = 0 \Sigma F x = 0$ $F BD = 1000 \sin 30^{\circ} + 2000 FBD = 1000 \sin 30^{\circ} + 2000$ F BD = 2500N FBD=2500N tension

At Joint C

 $\Sigma F V = 0 \Sigma F V = 0$

F CD sin60°=866.02sin60° +1000 FCDsin60°=866.02sin60° + 1000

F CD = 2020.72N FCD = 2020.72N tension

 $\Sigma F H = 0 \Sigma F H = 0$

F CE =F CD cos60°+866.02cos60° +1732.05 FCE=FCDcos60° +866.02cos60°+1732.05

F CE =2020.72cos60° +866.02cos60° +1732.05 FCE=2020.72c os^[0]60° +866.02cos60° +1732.05

F CE = 3175.42N FCE = 3175.42N compression

Result :

- AB = 2000 N tension
- AC = 1732.05 N compression
- BC = 866.02 N compression
- BD = 2500 N tension
- CD = 2020.72 N tension
- CE = 3175.42 N compression