Bachelor of Architecture

Mathematics

Lecture 09

In this lecture we are going to see the Reductions formula for trigonometric functions, Taylor’s
theorem and then Summary.

Reduction formula for trigonometric functions:

We know the trigonometric functions are the functions deals with the sine, Cos, cosine, tan etc.
And in that this reductions formula is a special technique of integration which is used for higher
power integrand. Here the power of integrand is reduced and the process is continued till we
get a power which can be easily integrated.

Reduction formula is a formula which connects a given integral with another integral which is of
the same type but of a lower degree or lower order or otherwise easier to evaluate using any
technique of integration.

Result - I:

Obtain the reduction formula forjsinn Xdx.

Here the sin x is the trigonometric function and it is obtained from the basic triangle called right
angle triangle. Where the sin is define as the opposite by hypotenuse.And the integration of sin
x give —Cos x, then the integration of higher order sin x can be done using this reduction
formula.

Let us consider
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This integration is in the form of,
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So this is the reduction formula for the given higher order integration. Now it is the case of
indefinite integral. If it is considered as definite integral then,
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Replacing the n terms we get,

n-3
|, =l——1I
n-2 [n_z n-4
n-5
|n4=(n_4 I
n-7
o= ——1I
n-6 (n—6 n-8

Now from this expression two cases arrives, the first case is,
Case 1:

When n is a positive or Odd, Then
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But we know that,
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Suppose when n is the positive even integer,
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In this case where | is,
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Similarly we can obtain the reduction formula for the Cos function and tan function.
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Similarly we can obtain the integral function for the tan function also as,
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Example 1:
7

Evaluate .[Sinzmxdx,m eN.
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Solution:

In this problem the 2m is the higher order.Here 2m is the even positive integer. We know the

formula for the positive integer,
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Taylor’s Theorem with Lagrange form of reminder after n terms:

It is a mean value theorem. If a function f(x) is such that

a) F(X), F'(X), F"(X)reinnene, f"*(X) are continues in [a,a+h].
b) f"(x) existin [a,a+h]. that at least one & between 0 and 1 such that
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Where - f"(a+6h)is called Lagrange’s form of remainder after n terms, i.e., R, = —”I f"(a+6h).
ni n:



Summary:

Reduction technique is a special technique to integrate higher power functions. Reduction
formula is the one which connects a given integral with another of the same type but of a lower
degree using any technique of integration. The Taylor’s theorem with Lagange’s form of
reminder after n terms are also discussed.

After listening to this lecture you can answer the following questions.

Questions:

1. What do you mean by reduction formula?

2. Given the reduction formula for ISin”x.

3. Define Taylor’s theorem.



