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Lecture 09 

In this lecture we are going to see the Reductions formula for trigonometric functions, Taylor’s 

theorem and then Summary. 

Reduction formula for trigonometric functions: 

We know the trigonometric functions are the functions deals with the sine, Cos, cosine, tan etc.  

And in that this reductions formula is a special technique of integration which is used for higher 

power integrand.  Here the power of integrand is reduced and the process is continued till we 

get a power which can be easily integrated.   

Reduction formula is a formula which connects a given integral with another integral which is of 

the same type but of a lower degree or lower order or otherwise easier to evaluate  using any 

technique of integration.  

Result - I: 

Obtain the reduction formula for  xdxnsin . 

Here the sin x is the trigonometric function and it is obtained from the basic triangle called right 

angle triangle.  Where the sin is define as the opposite by hypotenuse.And the integration of sin 

x give –Cos x, then the integration of higher order sin x can be done using this reduction 

formula.  
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 xdxn
nI sin  


 xSinxdxn 1sin  

This integration is in the form of, 

  vduuvudv  

  dxCosxxCosnSinnCosxxnSin )(2)1()(1  




  xdxxCosSinnxCosxSin nn 221 )1(  

   dxxSinxSinnxCosxSin nn )1()1( 221  

   dxxSinxdxSinnxCosxSin nnn 21 )(1(  

))(1( 2

1

nn

n IInxCosxSin  

  

2

1 )1()1( 

  n

n

nn InxCosxSinInI  

2

1 )1(


 



 n

n

n I
n

n

n

xCosxSin
I  

So this is the reduction formula for the given higher order integration. Now it is the case of 

indefinite integral. If it is considered as definite integral then, 
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Replacing the n terms we get, 
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Now from this expression two cases arrives, the first case is, 

Case 1: 

When n is a positive or Odd, Then 
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But we know that, 
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Suppose when n is the positive even integer, 
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In this case where 0I is, 
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 When n is a positive odd natural number. 
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Similarly we can obtain the reduction formula for the Cos function and tan function. 
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Similarly we can obtain the integral function for the tan function also as, 
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Example 1: 

Evaluate  
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NmxdxSin m . 

Solution: 

In this problem the 2m is the higher order.Here 2m is the even positive integer. We know the 

formula for the positive integer, 
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Taylor’s Theorem with Lagrange form of reminder after n terms: 

It is a mean value theorem.  If a function f(x) is such that 
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Summary: 

Reduction technique is a special technique to integrate higher power functions.  Reduction 

formula is the one which connects a given integral with another of the same type but of a lower 

degree using any technique of integration.  The Taylor’s theorem with Lagange’s form of 

reminder after n terms are also discussed.  

After listening to this lecture you can answer the following questions. 

Questions: 

1. What do you mean by reduction formula? 

2. Given the reduction formula for  xSin n . 

3. Define Taylor’s theorem. 

 

 


