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In this lecture we are going to see Cauchy-Euler homogeneous linear differential 

equations, Equation reducible to linear differential equation with constant co-

efficient, and Legendre homogeneous linear differential equationsand then 

summary. 

Cauchy-Euler homogeneous linear differential equations: 

A linear differential equation of the form, 
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Where naaa ......., 21 are constants and F is either a constant or a function of X 

only is called Cauchy-Euler homogeneous linear differential equation. In this 

equation the index of x and order of derivative is same in each term of the 

equation.  Using the symbols, 
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The equation (1) become, 
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The above equation can be reduced to linear differential equation with constant 

co-efficient by substituting. 

Equation reducible to linear differential equation with constant co-efficient: 

To get the equation reducible to linear differential equation with constant co-

efficient we need to do some substitution,  



zex   

zx ln  

So that,     
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Now using chain rule for differentiation we obtain, 
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Then designing a new operator for 
dz

d
, 

1D
dz

d
  

yDxD
dz

dy

dx

dy
x y 1  

So this is the way we can reduce the differential equation with constant co-

efficient.  Similarly for the second derivative we get, 
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The further simplification of the above equation will give, 
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Similarly for the third derivative we can write as, 
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So like this we can write the operator form for fourth derivatives etc., in general it 

will be, 
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Now substituting the values of yDxyDxxDy
3322 ,,  in equation (1) we get, 
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This equation is linear differential equation with constant co-efficient.  This 

equation can be solved by various methods. Now we will apply this concept in 

problem. 

Example 1: 

Solve the differential equation 0)422  yxDDx  

Solution: 

First write the given equation in operator form, 

zex   

zx ln  
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The given equation will be, 
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This is similar to the second order differential equation then,  
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This is the required solution of the given linear differential equation. 

Example 2: 

Find the general solution of the differential equation 
222 3)( xyyDx   

Solution: 

Let us start with the method of substitution, we have 
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The characteristic equation of the above equation will be, 
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Then the complementary function of the equation will be, 
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This can further be simplified by substituting xz ln . 
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Now let us go to the particular integral, 
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Substituting 2 in the place of D we get, 
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This is the required solution of the given differential equation. 

 



 

 

Legendre’s homogeneous linear differential equations: 

A linear differential equation of the form, 
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Where naaaba ,.....,,, 21  are constants and F is either a constants or a function of 

x only is called Legendre’s homogeneous linear differential equation.  

Here the index of (a+bx) and the order of derivative is same in each term of such 

equations.  To solve the equation (1) we introduce a new independent variables z 

such that 

Summary: 

In this lecture we learnt that the Cauchy-Euler homogeneous linear differential 

equation and the Cauchy-Euler homogeneous linear differential equation can be 

reduced to constant co-efficient linear differential equation by substituting 

.zex   Solution of this homogeneous linear differential equation consists of 

complementary function and particular integral. 

After listening to this lecture you can answer the following questions. 

Questions: 

1. Solve 0)223( 2233  yxDDxDx . 

2. Write Legendre’s homogeneous linear differential equation. 

3. Solve 
43 3''' xyxyyx  . 

 


