Bachelor of Architecture

Mathematics

Lecture 13

In this lecture we are going to see Cauchy-Euler homogeneous linear differential equations, Equation reducible to linear differential equation with constant coefficient, and Legendre homogeneous linear differential equationsand then summary.

Cauchy-Euler homogeneous linear differential equations:

A linear differential equation of the form,

$$a_0 x^n \frac{d^n y}{dx^n} + a_1 x^{n-1} \frac{d^{n-1} y}{dx^{n-1}} + a_2 x^{n-2} \frac{dn^{-2} y}{dx^{n-2}} + \dots + a_n y = F(x) - \dots - (1)$$

Where a_1, a_2, \dots, a_n are constants and F is either a constant or a function of X only is called Cauchy-Euler homogeneous linear differential equation. In this equation the index of x and order of derivative is same in each term of the equation. Using the symbols,

$$D(=\frac{d}{dx}); D^2(=\frac{d^2}{dx^2})....D^n(=\frac{d^n}{dx^n})$$

The equation (1) become,

$$(a_0x^nD^n + a_1x^{n-1}D^{n-1} + a_2x^{n-2}D^{n-2} + \dots a_n)y = F(x)$$

The above equation can be reduced to linear differential equation with constant co-efficient by substituting.

Equation reducible to linear differential equation with constant co-efficient:

To get the equation reducible to linear differential equation with constant coefficient we need to do some substitution,

$$x = e^{z}$$

 $\ln x = z$

So that,

$$\frac{dz}{dx} = \frac{1}{x} - \dots - (3)$$

Now using chain rule for differentiation we obtain,

$$\frac{dy}{dx} = \frac{dy}{dz} \cdot \frac{dz}{dx} = \frac{1}{x} \cdot \frac{dy}{dz}$$

Then designing a new operator for $\frac{d}{dz}$,

$$\frac{d}{dz} = D_1$$

$$x\frac{dy}{dx} = \frac{dy}{dz} = xD_y = D_1y$$

So this is the way we can reduce the differential equation with constant coefficient. Similarly for the second derivative we get,

$$\frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d}{dx} \left(\frac{1}{x} \frac{dy}{dz} \right)$$
$$= \frac{-1}{x^2} \frac{dy}{dz} + \frac{1}{x} \frac{d}{dx} \left(\frac{dy}{dz} \right)$$
$$= \frac{-1}{x^2} \frac{dy}{dz} + \frac{1}{x} \frac{d}{dz} \left(\frac{dy}{dz} \right) \frac{dz}{dx}$$

The further simplification of the above equation will give,

$$= \frac{-1}{x^{2}} \frac{dy}{dz} + \frac{1}{x^{2}} \frac{d^{2}y}{dz^{2}}$$
$$x^{2} \frac{d^{2}y}{dx^{2}} = \frac{d^{2}y}{dz^{2}} - \frac{dy}{dz}$$
$$x^{2} D^{2} y = D_{1}(D_{1} - 1)y$$

Similarly for the third derivative we can write as,

$$x^{3}D^{3}y = D_{1}(D_{1}-1)(D_{1}-2)y$$

So like this we can write the operator form for fourth derivatives etc., in general it will be,

$$x^{n}D^{n}y = D_{1}(D_{1}-1)(D_{1}-2)...(D_{1}-n+1)y$$

Now substituting the values of xD_y , x^2D^2y , x^3D^3y in equation (1) we get,

$$[a_0D_1(D_1-1)\dots(D_1-n+1)+\dots+a_{n-2}D_1(D_1-1)+\dots(a_{n-1}D_1+a_n]y = F(e^z) - -(4)$$

This equation is linear differential equation with constant co-efficient. This equation can be solved by various methods. Now we will apply this concept in problem.

Example 1:

Solve the differential equation $x^2D^2 + xD - 4$) y = 0

Solution:

First write the given equation in operator form,

 $x = e^{z}$

 $\ln x = z$

$$xD = D_1, x^2D^2 = D_1(D_1 - 1)$$

The given equation will be,

$$[D_1(D_1 - 1) + D_1 - 4]y = 0$$
$$[D_1^2 - D_1 + D_1 - 4]y = 0$$
$$[D_1^2 - 4]y = 0$$

This is similar to the second order differential equation then,

$$m = 2, -2$$

$$y = c_1 e^{2z} + c_2 e^{-2z}$$

$$z = \log x$$

$$y = c_1 e^{2\log x} + c_2 e^{-2\log x}$$

$$y = c_1 x^2 + c_2 x^{-2}$$

This is the required solution of the given linear differential equation.

Example 2:

Find the general solution of the differential equation $(x^2D^2 + y)y = 3x^2$

Solution:

Let us start with the method of substitution, we have

$$x = e^{z}$$

(D₁(D₁-1)+1)y = 3e^{2z}
(D₁² - D₁+1)y = 3e^{2z}

The characteristic equation of the above equation will be,

$$m^2 - m + 1 = 0$$
$$m = \frac{(1 \pm i\sqrt{3})}{2}$$

Then the complementary function of the equation will be,

$$C.F = e^{\frac{7}{2}} \left[c_1 \cos\left(\frac{2\sqrt{3}}{2}\right) + c_2 \sin\left(\frac{2\sqrt{3}}{2}\right) \right]$$

This can further be simplified by substituting $z = \ln x$.

$$C.F = \sqrt{x} \left[c_1 \cos\left(\ln \frac{x\sqrt{3}}{2}\right) + c_2 \sin\left(\ln \frac{x\sqrt{3}}{2}\right) \right]$$

Now let us go to the particular integral,

$$P.I = \frac{1}{D_1^2 - D_1 + 1} 3e^{2z}$$

Substituting 2 in the place of D we get,

$$= \frac{1}{2^2 - 2 + 1} 3e^{2z} = e^{2z}$$
$$y = \sqrt{x} \left[c_1 \cos\left(\frac{\ln x\sqrt{3}}{2}\right) + c_1 \sin\left(\frac{\ln x\sqrt{3}}{2}\right) \right] + x^2$$

This is the required solution of the given differential equation.

Legendre's homogeneous linear differential equations:

A linear differential equation of the form,

$$\left[(a+bx)^n a_0 D^n + (a+bx)^{n-1} a_1 D^{n-1} + (a+bx)^{n-2} a_2 D^{n-2} + \dots + a_n \right] y = F(x) - -(1)$$

Where $a, b, a_1, a_2, \dots, a_n$ are constants and F is either a constants or a function of x only is called Legendre's homogeneous linear differential equation.

Here the index of (a+bx) and the order of derivative is same in each term of such equations. To solve the equation (1) we introduce a new independent variables z such that

Summary:

In this lecture we learnt that the Cauchy-Euler homogeneous linear differential equation and the Cauchy-Euler homogeneous linear differential equation can be reduced to constant co-efficient linear differential equation by substituting $x = e^{z}$. Solution of this homogeneous linear differential equation consists of complementary function and particular integral.

After listening to this lecture you can answer the following questions.

Questions:

- 1. Solve $(x^3D^3 + 3x^2D^2 2xD + 2)y = 0$.
- 2. Write Legendre's homogeneous linear differential equation.
- 3. Solve $x^3y'' + xy' y = 3x^4$.