FAQ's

1. Solve $(D^2+4)y=\sin 3x$.

The complementary function is $y = c_1 \cos 2x + c_2 \sin 2x$ and a particular integral is $y = \frac{1}{D^2 + 4} \sin 3x = \frac{1}{(-3)^2 + 4} \sin 3x$ $= -\frac{1}{5} \sin 3x$ The solution is $y = c_1 \cos 2x + c_2 \sin 2x - \frac{1}{5} \sin 3x$

2. Give the modification rule in method of undetermined co-efficients.

If a term in your choice for $y_p(x)$ is a solution of the homogeneous equation $y^n + p_{n-1}(x)y^{n-1} + \dots + p_1(x)y' + p_0(x)y = 0$, then multiply this term by x^k , where k is smallest positive integer such that this term times x^k is not a solution of the above homogeneous equations.

3. State the sum rule for the method of undetermined co-efficients.

If r(x) is a sum of functions like ke^{γx}, kxⁿ (n=0,1.....) etc. then y_p(x) is any value like ce^{γx}, kcoswx+msinwx.....etc.

4. Give the theorem of linear independence theorem.

Any number of solutions of the form $e^{\lambda x}$ are linearly independent on an open interval I if and only if the corresponding λ are all different.

5. Define simple complex root of a differential equations.

If complex roots occur, they must occur in conjugate pairs since the coefficients of the differential equations are real. Thus if $\lambda = \gamma + iw$ is a simple root of characteristic equation so is the conjugate $\overline{\lambda} = \gamma - iw$ and two corresponding linearly independent solution are $y_1 = e^{\gamma x} \cos wx$, $y_2 = e^{\gamma x} \sin wx$,