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In this lecture we are going to see the Linear differential equations (LDE), Second 

order LDE with constant co-efficient and the Summary. 

Linear differential equations: 

Linear differential equations are in which the dependent variable and its 

derivatives occurs only in the first degree and are not multiplied together.  Thus 

the general linear differential equation of the nth order is of the form. 
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Where nppp ..........
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and x functions of x only and above said equation can be 

reduced to second order as follows. 

Keep n=2, 
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This is the second order linear differential equation with constant co-efficient if 
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pp are all constants. 

Theorem on Solution: 

If 
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yyyy  are the solution  of linear differential equation then 
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is also its solution. 

The complete solution of differential equation has two parts, 

i. Complementary function (C.F) 

ii. Particular integral (P.I). 



 

 

Operators D: 

Denoting 
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d
 by 2& DD the differential equation can be written in symbolic 

form as, 
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Thus the symbol D stands for the operation of differentiation and can be treated 

much the same as an algebraic quantity. 

For example: 
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Rules for finding the complementary functions: 

Write the given differential equation in symbolic form, 
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Equate the symbolic form to zero,  
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This is called auxiliary equations (A.E). Next this auxiliary equation has to be 

factorized. Then let 
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&mm be its roots. 



Case I: 

If 
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&mm are real and different then 
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Case II: 

If the two roots are equal 
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Case III: 

If the roots are complex,  imim  21 , then the complementary 
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Solve 02
2

2

 y
dx

dy

dx

yd
 

Solution: 

Let us first write the differential equation in the operator form, 
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This equation is known as the auxiliary equation. So factorizing this equation we 

get, 
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This is the complete solution for the given differential equation. 



Example 2: 
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Solution: 

Here the x is a variable which is differentiated with respect to t. Now write the 

given equation in the operator mode. 
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Then the auxiliary form of this equation will be, 
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Next factorizing this auxiliary form of equation we get, 
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Here the roots are equal hence the complementary function will be in the form, 

tetccx 3
21 )(   

Rules for finding the particular integral: 

Consider the equation xykDkDkD n
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The particular integral will be, 
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Case II: 
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Case III: 
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operate on 
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Case IV: 

When vex ax , where v is a function of x, 
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Case V: 

When x is any function of x, 
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Summary: 

In this lecture we learned the Definition of linear differential equation is learnt. 

And then the solution of second order linear differential equation is learnt.  

Complementary function and particular integrals are the components of complete 

solution of linear differential equation. 

After listening to this lecture you can answer the following questions.  

Questions: 

1. Define linear differential equations. 

2. Solve 0
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3. Solve xxxyD cos3sin,)1( 2  . 

 

 


