FAQ's

1. Define homogeneous linear differential equations.

An nth order linear differential equations has the form $b_n(x)y^{(n)} + b_{n-1}(x)y^{(n-1)} + \dots + b_2(x)y^{''} + b_1(x)y^{'} + b_0(x)y = g(x)$ where g(x) and the co-efficients $b_j(x)$ (j=0, 1, 2,....n) depend solely on the variable x. If $g(x) \equiv 0$ then this equation is homogeneous.

2. What do you mean linearly dependent solutions?

A set of function $\{y_1(x), y_2(x), \dots, y_n(x)\}$ is linearly dependent on $a \le x \le b$ if there exists constants c_1, c_2, \dots, c_n not all zero such that $c_1y_1(x)+c_2y_2(x)+\dots+c_ny_n(x)=0$.

3. Solve y"-y'-2y=0

The characteristics equation is $\lambda^2 - \lambda - 2 = 0$ which can be factored into $(\lambda + 1) (\lambda - 2) = 0$.since the roots $\lambda_1 = -1$ and $\lambda_2 = 2$ are real and distinct, the solution is given by $y = c_1 e^{-x} + c_2 e^{2x}$.

4. Solve y''+4y=0

The characteristic equation is $\lambda^2 + 4\lambda = 0$ which can be factored into $(\lambda - 2i)(\lambda + 2i)=0$. These roots are a complex conjugate pair, so the general solution is given by $y=c_1 \cos 2x+c_2 \sin 2x$.

5. Solve y''=0

The characteristics equation is $\lambda^2 = 0$, which has roots $\lambda_1 = \lambda_2 = 0$. The solution is given by $y = c_1 e^{0x} + c_2 x e^{0x} = c_1 + x c_2$.